@@ -8,7 +8,7 @@ msgstr ""
88"Project-Id-Version :Python 3.7\n "
99"Report-Msgid-Bugs-To :\n "
1010"POT-Creation-Date :2018-06-26 18:54+0800\n "
11- "PO-Revision-Date :2016-11-19 00:37+0000 \n "
11+ "PO-Revision-Date :2018-10-16 16:15+0800 \n "
1212"Last-Translator :Liang-Bo Wang <me@liang2.tw>\n "
1313"Language-Team :Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
1414"tw)\n "
@@ -17,28 +17,37 @@ msgstr ""
1717"Content-Type :text/plain; charset=UTF-8\n "
1818"Content-Transfer-Encoding :8bit\n "
1919"Plural-Forms :nplurals=1; plural=0;\n "
20+ "X-Generator :Poedit 2.2\n "
2021
2122#: ../../tutorial/floatingpoint.rst:9
2223msgid "Floating Point Arithmetic: Issues and Limitations"
23- msgstr ""
24+ msgstr "浮點數運算:問題與限制 "
2425
2526#: ../../tutorial/floatingpoint.rst:14
2627msgid ""
2728"Floating-point numbers are represented in computer hardware as base 2 "
2829"(binary) fractions. For example, the decimal fraction ::"
2930msgstr ""
31+ "在計算機架構中,浮點數透過二進位小數表示。例如說,在十進位小數中:\n"
32+ "\n"
33+ "::"
3034
3135#: ../../tutorial/floatingpoint.rst:19
3236msgid ""
3337"has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction ::"
3438msgstr ""
39+ "可被分為 1/10 + 2/100 + 5/1000,同樣的道理,二進位小數 :\n"
40+ "\n"
41+ "::"
3542
3643#: ../../tutorial/floatingpoint.rst:23
3744msgid ""
3845"has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the "
3946"only real difference being that the first is written in base 10 fractional "
4047"notation, and the second in base 2."
4148msgstr ""
49+ "可被分為 0/2 + 0/4 + 1/8。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
50+ "十進位表示,後者以二進位表示。"
4251
4352#: ../../tutorial/floatingpoint.rst:27
4453msgid ""
@@ -47,30 +56,45 @@ msgid ""
4756"point numbers you enter are only approximated by the binary floating-point "
4857"numbers actually stored in the machine."
4958msgstr ""
59+ "不幸的是,大多數十進位小數無法精準地以二進位小數表示。一般的結果為,您輸入的"
60+ "十進位浮點數由實際存在計算機中的二進位浮點數近似。"
5061
5162#: ../../tutorial/floatingpoint.rst:32
5263msgid ""
5364"The problem is easier to understand at first in base 10. Consider the "
5465"fraction 1/3. You can approximate that as a base 10 fraction::"
5566msgstr ""
67+ "在十進位中,這個問題更容易被理解。以分數 1/3 為例,您可以將其近似為十進位小"
68+ "數:\n"
69+ "\n"
70+ "::"
5671
5772#: ../../tutorial/floatingpoint.rst:37 ../../tutorial/floatingpoint.rst:41
5873msgid "or, better, ::"
5974msgstr ""
75+ "或者,更好的近似:\n"
76+ "\n"
77+ "::"
6078
6179#: ../../tutorial/floatingpoint.rst:45
6280msgid ""
6381"and so on. No matter how many digits you're willing to write down, the "
6482"result will never be exactly 1/3, but will be an increasingly better "
6583"approximation of 1/3."
6684msgstr ""
85+ "依此類推,不論你使用多少位數表示小數,最後的結果都無法精準地表示 1/3,但你還"
86+ "是能越來越精準地表示 1/3。"
6787
6888#: ../../tutorial/floatingpoint.rst:49
6989msgid ""
7090"In the same way, no matter how many base 2 digits you're willing to use, the "
7191"decimal value 0.1 cannot be represented exactly as a base 2 fraction. In "
7292"base 2, 1/10 is the infinitely repeating fraction ::"
7393msgstr ""
94+ "同樣的道理,不論你願意以多少位數表示二進位小數,十進位小數 0.1 都無法被二進位"
95+ "小數精準地表達。在二進位小數中, 1/10 會是一個無限循環小數:\n"
96+ "\n"
97+ "::"
7498
7599#: ../../tutorial/floatingpoint.rst:55
76100msgid ""