- Notifications
You must be signed in to change notification settings - Fork208
A curated list of Google Earth Engine resources
License
NotificationsYou must be signed in to change notification settings
opengeos/Awesome-GEE
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
A curated list of Google Earth Engine resources. Please visit theAwesome-GEE GitHub repo if you want to contribute to this project.
- Earth Engine official websites
- Get Started
- Get Help
- JavaScript API
- Python API
- R
- QGIS
- GitHub Developers
- Apps
- Free Courses
- Presentations
- Videos
- Projects
- Websites
- Datasets
- Papers
- Contributing
- License
- Official homepage
- JavaScript Code Editor
- API Documentation
- Data Catalog
- Timelapse
- Earth Engine Apps
- Blog
- Sign up
- Developer Forum
- Issue Tracker
- Earth Engine API on GitHub
- Google Earth Engine Community Tutorials
- Google Earth Engine Community Developer Resources
- Sign up for an Earth Engine account.
- Read the Earth Engine API documentation -Get Started with Earth Engine.
- Read another Earth Engine API documentation -Client vs. Server. Make sure you have a good understanding of client-side objects vs server-side objects.
- Try out theJavaScript API or Python API (e.g.,geemap).
- ReadCoding Best Practices.
- Earth Engine Developer Forum
- GIS Stack Exchange
- Report a bug
- Dataset requests
- Feature requests
- Slack channel for geemap and Earth Engine
- JavaScript Code Editor - The official Google Earth Engine JavaScript Code Editor.
- jdbcode/Snazzy-EE-TS-GIF - Apps for creating Landsat time series animations.
- fitoprincipe/geetools-code-editor - A set of tools to use in Google Earth Engine JavaScript Code Editor.
- Fernerkundung/EarthEngine_scripts - Scripts and snippets for Google Earth Engine.
- Google Earth Engine Toolbox (GEET) - Library to write small EE apps or big/complex apps with a lot less code.
- LandTrendr - Spectral-temporal segmentation algorithm.
- zecojls/tagee - Terrain Analysis in Google Earth Engine (TAGEE).
- ee-palettes - A module for generating color palettes in Earth Engine to be applied to mapped data.
- gee-ccdc-tools - A suite of tools designed for continuous land change monitoring in Google Earth Engine.
- Continuous Degradation Detection (CODED) - A system for monitoring forest degradation and deforestation.
- LT-GEE - Google Earth Engine implementation of the LandTrendr spectral-temporal segmentation algorithm.
- spectral - Awesome Spectral Indices for the Google Earth Engine JavaScript API (Code Editor).
- msslib - An Earth Engine JavaScript library for working with Landsat MSS image data.
- geeSharp - Pan-sharpening in the Earth Engine Code Editor.
- snazzy - Custom basemap styles in the Earth Engine Code Editor.
- ee-polyfill - Modern Javascript methods (ES6+) for the Earth Engine Code Editor.
- gee-blend - Various blending functions for Google Earth Engine.
- OpenEarthEngineLibrary - Collection of code goodies for Google Earth Engine (GEE).
- Introduction to Google Earth Engine
- Introduction to JavaScript for Earth Engine
- Introduction to the Earth Engine JavaScript API
- Global Forest Change Analysis
- Global Surface Water Change Analysis
- Beginner's Cookbook
- Combining FeatureCollections
- Customizing Base Map Styles
- Forest Cover and Loss Estimation
- Getting Started with Drawing Tools
- Identifying Annual First Day of No Snow Cover
- Interactive Region Reduction App
- Land Surface Temperature in Uganda
- Landsat ETM+ to OLI Harmonization
- MODIS NDVI Times Series Animation
- Non-parametric trend analysis
- GEE 开发 on 知乎 by 无形的风
- Calculating Area in Google Earth Engine
- Extracting Time Series using Google Earth Engine
- Histogram Matching in Google Earth Engine
- Getting Git Right on Google Earth Engine
- AmericaView - Google Earth Engine (GEE) tutorials
- Earth Lab - Introduction to the Google Earth Engine code editor
- Coding Club - Intro to the Google Earth Engine
- Global Snow Observatory - Google Earth Engine Tutorials
- GEARS - Getting started with Google Earth Engine
- An Introduction to Remote Sensing for Ecologists Using Google Earth Engine
- An introduction to Google Earth Engine
- earthengine-api - The official Google Earth Engine Python API.
- geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.
- geeadd - Google Earth Engine Batch Asset Manager with Addons.
- geeup - Simple CLI for Google Earth Engine Uploads.
- cartoee - Publication quality maps using Earth Engine and Cartopy.
- gee_tools - A set of tools for working with Google Earth Engine Python API.
- landsat-extract-gee - Get Landsat surface reflectance time-series from google earth engine.
- Ndvi2Gif - Creating seasonal NDVI compositions GIFs.
- eemont - A Python package that extends the Google Earth Engine Python API with pre-processing and processing tools.
- hydra-floods - An open source Python application for downloading, processing, and delivering surface water maps derived from remote sensing data.
- RadGEEToolbox - Python package simplifying large-scale operations using Google Earth Engine (GEE) Python API for users who utilize Landsat (5, 8, & 9) and Sentinel 1 & 2 data.
- restee - A package that aims to make plugging Earth Engine computations into downstream Python processing easier.
- wxee - A Python interface between Earth Engine and xarray for processing weather and climate data.
- taskee - Monitor your Earth Engine tasks and get notifications on your phone or computer.
- geedim - Search, composite, and download Earth Engine imagery, without size limits.
- earthengine-py-notebooks - A collection of 360+ Jupyter notebook examples for using Google Earth Engine with interactive mapping.
- earthengine-py-examples - A collection of 300+ examples for using Earth Engine and the geemap Python package.
- ee-tensorflow-notebooks - Repository to place example notebooks for Deep Learning applications with TensorFlow and Earth Engine.
- CoastSat - Global shoreline mapping tool from satellite imagery.
- Google-Earth-Engine-Python-Examples
- csaybar/EEwPython
- geemap and Earth Engine Python API tutorials
- A Quick Introduction to Google Earth Engine
- Google Earth Engine (GEE) and Image Analysis
- Earth Engine Python API Colab Setup
- Earth Engine TensorFlow demonstration notebook
- Earth Lab - Calculating the area of polygons in Google Earth Engine
- Semantic Segmentation of GEE High Resolution Imagery
- rgee - An R package for using Google Earth Engine.
- earthEngineGrabR - Simplify the acquisition of remote sensing data.
- rgee-examples - A collection of 250+ examples for using Google Earth Engine with R.
- rgee tutorial #1: Creating global land surface temperature maps
- rgee tutorial #2: Satellite image processing
- Earth Engine QGIS Plugin (Website,GitHub) - Integrates Google Earth Engine and QGIS using Python API.
- qgis-earthengine-examples - A collection of 300+ Python examples for using Google Earth Engine in QGIS.
- Cesar Aybar
- Justin Braaten
- Tirthankar "TC" Chakraborty
- Diego Garcia Diaz
- Gennadii Donchyts
- Ujaval Gandhi
- Philipp Gärtner
- Eduardo Lacerda
- Kel Markert
- Mort Canty
- Keiko Nomura
- Rodrigo E. Principe
- Mark Radwin
- Samapriya Roy
- Sabrina Szeto
- Qiusheng Wu
- Cesar Aybar
- Justin Braaten
- Tirthankar "TC" Chakraborty
- Morgan Crowley
- Diego Garcia Diaz
- Gennadii Donchyts
- Ujaval Gandhi
- Philipp Gärtner
- Belize GEO
- Mort Canty
- Kel Markert
- Keiko Nomura
- Samapriya Roy
- Sabrina Szeto
- Dave Thau
- Qiusheng Wu
- Iain H Woodhouse
- Earth Engine Apps - Google
- An image gallery of almost all publicly available Google Earth Engine Apps - Philipp Gärtner
- A searchable list of all publicly available Google Earth Engine Apps
- Earth Engine App Filter by Philipp Gärtner
- End-to-End Google Earth Engine - byUjaval Gandhi
- Spatial Data Management with Earth Engine - byQiusheng Wu
- Professor Iain Woodhouse’s guide to GEE resources and courses
- Using the geemap Python package for interactive mapping with Earth Engine - Earth Engine Virtual Meetup on May 8, 2020
- Cloud computing and interactive mapping with Earth Engine and open-source GIS - GeoInsider webinar on May 28, 2020
- Mapping Wetland Inundation Dynamics using Google Earth Engine - Machine learning and data fusion workshop on June 10, 2020
- Getting Started with Earth Engine with Sabrina Szeto (video -slides)
- Earth Engine Virtual Meetup on May 6, 2020 (video)
- geemap tutorials on YouTube
- geemap tutorials on 哔哩哔哩
- geemap tutorials on 西瓜视频
- GeoInsider webinar - Cloud computing and interactive mapping with Earth Engine and open-source GIS (video -slides)
- GeoInsider webinar 2 - Using Google Earth Engine for large-scale geospatial analysis: A case study of automated surface water mapping (video |slides)
- Google Earth Engine on Research Gate
- Global Surface Water Explorer
- Global Forest Cover Change
- Global Forest Watch
- Map Of Life
- Climate Engine
- Surface Water Mapping Tool
- Surface water changes (1985-2016)
- Decision Support Tools
- Earth Map
- CoastSat shoreline change database
- Landsat 9 Surface Reflectance
- Landsat 9 TOA Reflectance
- Landsat 8 Surface Reflectance
- Landsat 8 TOA Reflectance
- Aybar, C., Wu, Q., Bautista, L., Yali, R., & Barja, A. (2020). rgee: An R package for interacting with Google Earth Engine.The Journal of Open Source Software. 5(51), 2272.https://doi.org/10.21105/joss.02272
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone.Remote Sens. Environ. 202, 18–27.https://doi.org/10.1016/j.rse.2017.06.031
- Wu, Q. (2020). geemap: A Python package for interactive mapping with Google Earth Engine.The Journal of Open Source Software. 5(51), 2305.https://doi.org/10.21105/joss.02305
- Journal of Remote Sensing, Remote Sensing for Environmental and Societal Changes Using Google Earth Engine (Call for Papers)
- IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Cloud Computing in Google Earth Engine for Remote Sensing (Call for Papers)
- Remote Sensing, Google Earth Engine and Cloud Computing Platforms: Methods and Applications in Big Geo Data Science (Call for Papers,Published Papers)
- Remote Sensning, Google Earth Engine Applications (Call for Papers,Published Papers)
- Remote Sensing of Environment, Remote Sensing of Land Change Science with Google Earth Engine (Call for Papers,Published Papers)
- Amani, M., Ghorbanian, A., Ahmadi, A., Kakooei, M., ..., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.https://doi.org/10.1109/JSTARS.2020.3021052
- Boothroyd, R., Williams, R., Hoey, T., Barrett, B., & Prasojo, O. (2020). Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change.WIREs Water.https://doi.org/10.1002/wat2.1496
- Kumar, L., Mutanga, O., 2018. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential.Remote Sensing 10, 1509.https://doi.org/10.3390/rs10101509
- Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review.ISPRS J. Photogramm. Remote Sens. 164, 152–170.https://doi.org/10.1016/j.isprsjprs.2020.04.001
- Wang, L., Diao, C., Xian, G., Yin, D., Lu, Y., Zou, S., & Erickson, T. A. (2020). A summary of the special issue on remote sensing of land change science with Google earth engine.Remote Sensing of Environment.https://doi.org/10.1016/j.rse.2020.112002
- Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H., & Lippitt, C. D. (2022). Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review.Remote Sensing, 14(14), 3253.https://doi.org/10.3390/rs14143253
- Yang, L., Driscol, J., Sarigai, S., Wu, Q., Lippitt, C. D., & Morgan, M. (2022). Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing.Sensors, 22(6), 2416.https://doi.org/10.3390/s22062416
- Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., van de Giesen, N., 2016. Earth’s surface water change over the past 30 years.Nat. Clim. Chang. 6, 810.https://doi.org/10.1038/nclimate3111
- Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes.Nature 540, 418–422.https://doi.org/10.1038/nature20584
- Radwin, M., & Bowen, B. (2024). Evolution of Great Salt Lake’s Exposed Lakebed (1984-2023): Variations in Sediment Composition, Water, and Vegetation from Landsat OLI and Sentinel MSI Satellite Reflectance Data. Geosites, 51, 1–23.https://doi.org/10.31711/ugap.v51i.134
- Wu, Q., Lane, C.R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H.E., Lang, M.W., 2019. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.Remote Sens. Environ. 228, 1–13.https://doi.org/10.1016/j.rse.2019.04.015
- Yamazaki, D., Trigg, M.A., 2016. Hydrology: The dynamics of Earth’s surface water.Nature.https://doi.org/10.1038/nature21100
- Li, X., Zhou, Y., Zhu, Z., Cao, W., 2020. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States.Earth System Science Data 12, 357.https://doi.org/10.5194/essd-12-357-2020
- Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., Wang, S., 2018. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform.Remote Sens. Environ. 209, 227–239.https://doi.org/10.1016/j.rse.2018.02.055
- Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K., Ziegler, A.D., Chen, A., Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L., Zeng, Z., 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015.Nature Sustainability 1–7.https://doi.org/10.1038/s41893-020-0521-x
- Patel, N.N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F.R., Tatem, A.J., Trianni, G., 2015. Multitemporal settlement and population mapping from Landsat using Google Earth Engine.Int. J. Appl. Earth Obs. Geoinf. 35, 199–208.https://doi.org/10.1016/j.jag.2014.09.005
- Weiss, D.J., Nelson, A., Gibson, H.S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T.C.D., Howes, R.E., Tusting, L.S., Kang, S.Y., Cameron, E., Bisanzio, D., Battle, K.E., Bhatt, S., Gething, P.W., 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015.Nature 553, 333–336.https://doi.org/10.1038/nature25181
- Li, X., Zhou, Y., Meng, L., Asrar, G.R., Lu, C., Wu, Q., 2019. A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States.Earth System Science Data. 11(2), 881-894.https://doi.org/10.5194/essd-11-881-2019
- Robinson, N.P., Allred, B.W., Jones, M.O., Moreno, A., Kimball, J.S., Naugle, D.E., Erickson, T.A., Richardson, A.D., 2017. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States.Remote Sensing 9, 863.https://doi.org/10.3390/rs9080863
- Xie, Z., Phinn, S.R., Game, E.T., Pannell, D.J., Hobbs, R.J., Briggs, P.R., McDonald-Madden, E., 2019. Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation.Remote Sens. Environ. 232, 111317.https://doi.org/10.1016/j.rse.2019.111317
- Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B., 3rd, 2016. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine.Remote Sens. Environ. 185, 142–154.https://doi.org/10.1016/j.rse.2016.02.016
- Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, K., Thau, D., 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing.ISPRS J. Photogramm. Remote Sens. 126, 225–244.https://doi.org/10.1016/j.isprsjprs.2017.01.019
- Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., Yadav, K., Gorelick, N., 2017. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine.Remote Sensing 9, 1065.https://doi.org/10.3390/rs9101065
- Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad Mirzadeh, S., White, L., Banks, S., Montgomery, J., Hopkinson, C., 2019. Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results.Remote Sensing 11, 842.https://doi.org/10.3390/rs11070842
- Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., Giri, C., 2017. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform.ISPRS J. Photogramm. Remote Sens. 131, 104–120.https://doi.org/10.1016/j.isprsjprs.2017.07.011
- Hird, J.N., DeLancey, E.R., McDermid, G.J., Kariyeva, J., 2017. Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping.Remote Sensing 9, 1315.https://doi.org/10.3390/rs9121315
- Mahdianpari, M., Brisco, B., Granger, J. E., Mohammadimanesh, F., Salehi, B., Banks, S., ... & Weng, Q. (2020). The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth Engine.Canadian Journal of Remote Sensing, 46(3), 360-375.https://doi.org/10.1080/07038992.2020.1802584
- Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., Gill, E., 2018. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform.Remote Sensing 11, 43.https://doi.org/10.3390/rs11010043
- Radwin, M., & Bowen, B. (2024). Evolution of Great Salt Lake’s Exposed Lakebed (1984-2023): Variations in Sediment Composition, Water, and Vegetation from Landsat OLI and Sentinel MSI Satellite Reflectance Data. Geosites, 51, 1–23.https://doi.org/10.31711/ugap.v51i.134
- Wang, X., Xiao, X., Zou, Z., Chen, B., Ma, J., Dong, J., Doughty, R.B., Zhong, Q., Qin, Y., Dai, S., Li, X., Zhao, B., Li, B., 2020. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine.Remote Sens. Environ. 238, 110987.https://doi.org/10.1016/j.rse.2018.11.030
- Wu, Q., Lane, C.R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H.E., Lang, M.W., 2019. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.Remote Sens. Environ. 228, 1–13.https://doi.org/10.1016/j.rse.2019.04.015
- Yancho, J. M. M., Jones, T. G., Gandhi, S. R., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth Engine Mangrove Mapping Methodology (GEEMMM).Remote Sensing, 12(22), 3758.https://doi.org/10.3390/rs12223758
- Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., ... & Tait, A. M. (2022). Dynamic World, Near real-time global 10 m land use land cover mapping.Scientific Data, 9(1), 1-17.https://doi.org/10.1038/s41597-022-01307-4
- Carrasco, L., O’Neil, A.W., Morton, R.D., Rowland, C.S., 2019. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine.Remote Sensing 11, 288.https://doi.org/10.3390/rs11030288
- Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change.Science 342, 850–853.https://doi.org/10.1126/science.1244693
- Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., Zhu, Z., 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine.Remote Sens. Environ. 202, 166–176.https://doi.org/10.1016/j.rse.2017.02.021
- Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., Liang, S., 2020. Annual Dynamics of Global Land Cover and its Long-term Changes from 1982 to 2015.Earth Syst. Sci. Data. 12, 1217–1243.https://doi.org/10.5194/essd-12-1217-2020
- Radwin, M., & Bowen, B. (2024). Evolution of Great Salt Lake’s Exposed Lakebed (1984-2023): Variations in Sediment Composition, Water, and Vegetation from Landsat OLI and Sentinel MSI Satellite Reflectance Data. Geosites, 51, 1–23.https://doi.org/10.31711/ugap.v51i.134
- DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J.W., Lang, M.W., 2020. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine.Remote Sens. Environ. 240, 111664.https://doi.org/10.1016/j.rse.2020.111664
- Liu, C.-C., Shieh, M.-C., Ke, M.-S., Wang, K.-H., 2018. Flood Prevention and Emergency Response System Powered by Google Earth Engine.Remote Sensing 10, 1283.https://doi.org/10.3390/rs10081283
- Tellman, B., Sullivan, J.A., Kuhn, C., Kettner, A.J., Doyle, C.S., Brakenridge, G.R., Erickson, T.A., Slayback, D.A., 2021. Satellite imaging reveals increased proportion of population exposed to floods.Nature 596, 80–86.https://doi.org/10.1038/s41586-021-03695-w
- Vos, K., Splinter, K.D., Harley, M.D., Simmons, J.A., Turner, I.L., 2019. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imageryEnvironmental Modelling and Software. 122, 104528.https://doi.org/10.1016/j.envsoft.2019.104528
Contributions welcome! Read thecontribution guidelines first.
To the extent possible under law, Qiusheng Wu has waived all copyright and related or neighboring rights to this work.
About
A curated list of Google Earth Engine resources
Topics
Resources
License
Code of conduct
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Uh oh!
There was an error while loading.Please reload this page.
Contributors10
Uh oh!
There was an error while loading.Please reload this page.