Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commita46768c

Browse files
committed
Created using Colaboratory
1 parent1135554 commita46768c

File tree

1 file changed

+196
-0
lines changed

1 file changed

+196
-0
lines changed

‎ARIMA_&_SARIMA.ipynb

Lines changed: 196 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,196 @@
1+
{
2+
"nbformat":4,
3+
"nbformat_minor":0,
4+
"metadata": {
5+
"colab": {
6+
"name":"ARIMA & SARIMA.ipynb",
7+
"provenance": [],
8+
"mount_file_id":"1h0-Hypu0AntwTzJgUU1aW4y0SWIsinUC",
9+
"authorship_tag":"ABX9TyMTf7bGAILd6nKrxNRhZPIC",
10+
"include_colab_link":true
11+
},
12+
"kernelspec": {
13+
"name":"python3",
14+
"display_name":"Python 3"
15+
},
16+
"language_info": {
17+
"name":"python"
18+
}
19+
},
20+
"cells": [
21+
{
22+
"cell_type":"markdown",
23+
"metadata": {
24+
"id":"view-in-github",
25+
"colab_type":"text"
26+
},
27+
"source": [
28+
"<a href=\"https://colab.research.google.com/github/noobcoder2/demo-repo/blob/main/ARIMA_%26_SARIMA.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
29+
]
30+
},
31+
{
32+
"cell_type":"markdown",
33+
"source": [
34+
"\n",
35+
"ARIMA and Seasonal ARIMA\n",
36+
"Autoregressive Integrated Moving Averages\n",
37+
"The general process for ARIMA models is the following:\n",
38+
"\n",
39+
"Visualize the Time Series Data\n",
40+
"Make the time series data stationary\n",
41+
"Plot the Correlation and AutoCorrelation Charts\n",
42+
"Construct the ARIMA Model or Seasonal ARIMA based on the data\n",
43+
"Use the model to make predictions\n",
44+
"\n",
45+
"\n"
46+
],
47+
"metadata": {
48+
"id":"CjJ4wkcghkSx"
49+
}
50+
},
51+
{
52+
"cell_type":"code",
53+
"source": [
54+
"import pandas as pd\n",
55+
"import numpy as np\n",
56+
"import seaborn as sns\n",
57+
"import matplotlib.pyplot as plt\n",
58+
"%matplotlib inline"
59+
],
60+
"metadata": {
61+
"id":"82o_BC4-XPOz"
62+
},
63+
"execution_count":null,
64+
"outputs": []
65+
},
66+
{
67+
"cell_type":"code",
68+
"execution_count":12,
69+
"metadata": {
70+
"id":"xkPuoTAhVnNM"
71+
},
72+
"outputs": [],
73+
"source": [
74+
"CS_hs = pd.read_csv('CS_hs.csv');\n",
75+
"CS_m_all = pd.read_csv('CS_m_all.csv')\n",
76+
"CS_mor = pd.read_csv('CS_mor.csv')\n",
77+
"CS_pr = pd.read_csv('CS_pr.csv')\n",
78+
"CS_q_all = pd.read_csv('CS_q_all.csv')\n",
79+
"CS_wa = pd.read_csv('CS_wa.csv')\n",
80+
"FH_hs = pd.read_csv('FH_hs.csv')\n",
81+
"FH_m_all = pd.read_csv('FH_m_all.csv')\n",
82+
"FH_mor = pd.read_csv('FH_mor.csv')\n",
83+
"FH_pr = pd.read_csv('FH_pr.csv')\n",
84+
"FH_q_all = pd.read_csv('FH_q_all.csv')\n",
85+
"FH_wa = pd.read_csv('FH_wa.csv')\n",
86+
"ZI_m_all = pd.read_csv('Zi_m_all.csv')\n",
87+
"ZI_mor = pd.read_csv('Zi_mor.csv')\n",
88+
"ZI_pr = pd.read_csv('Zi_prfi.csv')\n",
89+
"ZI_q_all = pd.read_csv('Zi_q_all.csv')\n",
90+
"ZI_wa = pd.read_csv('Zi_Wa.csv')"
91+
]
92+
},
93+
{
94+
"cell_type":"code",
95+
"source": [
96+
"Zi_hs = pd.read_csv('Zi_hs.csv')"
97+
],
98+
"metadata": {
99+
"id":"SzAUMvQXmTM_"
100+
},
101+
"execution_count":18,
102+
"outputs": []
103+
},
104+
{
105+
"cell_type":"code",
106+
"source": [
107+
"# Convert Month into Datetime\n",
108+
"CS_hs['Date']=pd.to_datetime(CS_hs['Date'])\n",
109+
"CS_mor['Date']=pd.to_datetime(CS_mor['Date'])\n",
110+
"CS_pr['Date']=pd.to_datetime(CS_pr['Date'])\n",
111+
"CS_wa['Date']=pd.to_datetime(CS_wa['Date'])\n",
112+
"CS_q_all['Date']=pd.to_datetime(CS_q_all['Date'])\n",
113+
"CS_m_all['Date']=pd.to_datetime(CS_m_all['Date'])\n"
114+
],
115+
"metadata": {
116+
"id":"NMrrkyvnidMA"
117+
},
118+
"execution_count":13,
119+
"outputs": []
120+
},
121+
{
122+
"cell_type":"code",
123+
"source": [
124+
"FH_hs['Date']=pd.to_datetime(FH_hs['Date'])\n",
125+
"FH_mor['Date']=pd.to_datetime(FH_mor['Date'])\n",
126+
"FH_pr['Date']=pd.to_datetime(FH_pr['Date'])\n",
127+
"FH_wa['Date']=pd.to_datetime(FH_wa['Date'])\n",
128+
"FH_q_all['Date']=pd.to_datetime(FH_q_all['Date'])\n",
129+
"FH_m_all['Date']=pd.to_datetime(FH_m_all['Date'])"
130+
],
131+
"metadata": {
132+
"id":"_eO1HxE0jPne"
133+
},
134+
"execution_count":14,
135+
"outputs": []
136+
},
137+
{
138+
"cell_type":"code",
139+
"source": [
140+
"ZI_hs['Date']=pd.to_datetime(ZI_hs['Date'])\n",
141+
"ZI_mor['Date']=pd.to_datetime(ZI_mor['Date'])\n",
142+
"ZI_pr['Date']=pd.to_datetime(ZI_pr['Date'])\n",
143+
"ZI_wa['Date']=pd.to_datetime(ZI_wa['Date'])\n",
144+
"ZI_q_all['Date']=pd.to_datetime(ZI_q_all['Date'])\n",
145+
"ZI_m_all['Date']=pd.to_datetime(ZI_m_all['Date'])"
146+
],
147+
"metadata": {
148+
"id":"Kl6Lb_RUje0O"
149+
},
150+
"execution_count":20,
151+
"outputs": []
152+
},
153+
{
154+
"cell_type":"code",
155+
"source": [
156+
"df.set_index('Month',inplace=True)"
157+
],
158+
"metadata": {
159+
"id":"9fnag4Osipmc"
160+
},
161+
"execution_count":null,
162+
"outputs": []
163+
},
164+
{
165+
"cell_type":"code",
166+
"source": [
167+
"df.describe()"
168+
],
169+
"metadata": {
170+
"id":"5RMvQw9vipu0"
171+
},
172+
"execution_count":null,
173+
"outputs": []
174+
},
175+
{
176+
"cell_type":"markdown",
177+
"source": [
178+
"ARIMA TESTING"
179+
],
180+
"metadata": {
181+
"id":"y30Ph_rBmpxn"
182+
}
183+
},
184+
{
185+
"cell_type":"code",
186+
"source": [
187+
""
188+
],
189+
"metadata": {
190+
"id":"S9FanlKDmtXi"
191+
},
192+
"execution_count":null,
193+
"outputs": []
194+
}
195+
]
196+
}

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp