Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

PyTorch implementation of the Word2Vec (Skip-Gram Model) and visualizing the trained embeddings using TSNE

NotificationsYou must be signed in to change notification settings

n0obcoder/Skip-Gram-Model-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch implementation of the word2vec (skip-gram model) and visualization of the trained embeddings using TSNE !

2D representaion of some of the trained word embeddings

My TensorFlow implemntation of Skip-Gram Model can be foundhere.

Requirements

  • torch >= 1.4
  • numpy >= 1.18
  • matplotlib
  • tqdm
  • nltk
  • gensim

Training

python main.py

Visualizing real-time training loss in Tensorboard

tensorboard --logdir <PATH_TO_TENSORBOARD_EVENTS_FILE>

NOTE: By default,PATH_TO_TENSORBOARD_EVENTS_FILE is set toSUMMARY_DIR in config.py

Testing

python test.py

Inference

warindiacrimeguitarmoviesdesertphysicsreligionfootballcomputer
fighteuropedespitebandmovieregiontheoryreligiousteamprogram
battlecentralhelpplayseriesalongmathematicschristianwinsystems
armywesternseekrecordshowwesternmathematicalregardsportavailable
forceindianchallengepiecefilmsouthernstudytraditionclubdesign
allypartfailstarfeatureplainsciencechristianityleagueinformation

Blog-Post

Check out my blog post onword2vechere.

About

PyTorch implementation of the Word2Vec (Skip-Gram Model) and visualizing the trained embeddings using TSNE

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp