Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Connector between mlr3 and batchtools

NotificationsYou must be signed in to change notification settings

mlr-org/mlr3batchmark

Repository files navigation

r-cmd-checkCRAN statusStackOverflowMattermost

A connector betweenmlr3 andbatchtools. This allows to runlarge-scale benchmark experiments on scheduled high-performancecomputing clusters.

The package comes with two core functions for switching betweenmlr3andbatchtools to perform a benchmark:

  • After creating adesign object (as required formlr3’sbenchmark() function), instead ofbenchmark() callbatchmark()which populates anExperimentRegistry for the computational jobs ofthe benchmark. You are now in the world ofbatchtools where you canselectively submit jobs with different resources, monitor the progressor resubmit as needed.
  • After the computations are finished, collect the results withreduceResultsBatchmark() to return tomlr3. The resulting objectis a regularBenchmarkResult.

Example

library("mlr3")library("batchtools")library("mlr3batchmark")tasks= tsks(c("iris","sonar"))learners= lrns(c("classif.featureless","classif.rpart"))resamplings= rsmp("cv",folds=3)design= benchmark_grid(tasks=tasks,learners=learners,resamplings=resamplings)reg= makeExperimentRegistry(NA)
## No readable configuration file found## Created registry in '/tmp/RtmpbcuMc4/registry27b8961304f5da' using cluster functions 'Interactive'
ids= batchmark(design,reg=reg)
## Adding algorithm 'run_learner'## Adding problem 'abc694dd29a7a8ce'## Exporting new objects: '2da7eeb80b94fc3b' ...## Exporting new objects: 'c905990877a775af' ...## Exporting new objects: '3acc41a799a260d8' ...## Exporting new objects: 'ecf8ee265ec56766' ...## Overwriting previously exported object: 'ecf8ee265ec56766'## Adding 6 experiments ('abc694dd29a7a8ce'[1] x 'run_learner'[2] x repls[3]) ...## Adding problem 'f9791e97f9813150'## Exporting new objects: '62ac3bb85aabfbaf' ...## Adding 6 experiments ('f9791e97f9813150'[1] x 'run_learner'[2] x repls[3]) ...
submitJobs()
## Submitting 12 jobs in 12 chunks using cluster functions 'Interactive' ...## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)## Error in workhorse(iteration = job$repl, task = data, learner = learner,  : ##   unused argument (lgr_threshold = lgr::get_logger("mlr3")$threshold)
getStatus()
## Status for 12 jobs at 2025-05-26 09:23:22:##   Submitted    : 12 (100.0%)##   -- Queued    :  0 (  0.0%)##   -- Started   : 12 (100.0%)##   ---- Running :  0 (  0.0%)##   ---- Done    :  0 (  0.0%)##   ---- Error   : 12 (100.0%)##   ---- Expired :  0 (  0.0%)
reduceResultsBatchmark()
## ## ── <BenchmarkResult> of 0 rows with 0 resampling run ───────────────────────────

Resources

  • TheLarge-Scale Benchmarking chapter of themlr3book

About

Connector between mlr3 and batchtools

Topics

Resources

Stars

Watchers

Forks

Sponsor this project

 

Contributors7

Languages


[8]ページ先頭

©2009-2025 Movatter.jp