Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

License

NotificationsYou must be signed in to change notification settings

mlc-ai/mlc-python

Repository files navigation

MLC Logo

MLC-Python

Python-first Development for AI Compilers.

MLC is a Python-first toolkit that streamlines the development of AI compilers, runtimes, and compound AI systems with its Pythonic dataclasses, structure-aware tooling, and Python-based text formats.

Beyond pure Python, MLC natively supports zero-copy interoperation with C++ plugins, and enables a smooth engineering practice transitioning from Python to hybrid or Python-free development.

📥 Installation

pip install -U mlc-python

🔑 Key Features

🏗️ Define IRs with MLC Dataclasses

MLC provides Pythonic dataclasses:

importmlc.dataclassesasmlcd@mlcd.py_class("demo.MyClass")classMyClass(mlcd.PyClass):a:intb:strc:float|Noneinstance=MyClass(12,"test",c=None)

Type safety. MLC dataclass enforces strict type checking using Cython and C++.

>>>instance.c=10;print(instance)demo.MyClass(a=12,b='test',c=10.0)>>>instance.c="wrong type"TypeError:mustberealnumber,notstr>>>instance.non_exist=1AttributeError:'MyClass'objecthasnoattribute'non_exist'andno__dict__forsettingnewattributes

Serialization. MLC dataclasses are picklable and JSON-serializable.

>>>MyClass.from_json(instance.json())demo.MyClass(a=12,b='test',c=None)>>>importpickle;pickle.loads(pickle.dumps(instance))demo.MyClass(a=12,b='test',c=None)

🐍 Design Python-based Text Formats for IRs

Printer. MLC looks up method__ir_print__ to convert IR nodes to Python AST:

[Example]. Copy the toy IR definition to REPL and then create aFunc node below:

>>>a,b,c,d,e=Var("a"),Var("b"),Var("c"),Var("d"),Var("e")>>>f=Func("f", [a,b,c],stmts=[Assign(lhs=d,rhs=Add(a,b)),# d = a + bAssign(lhs=e,rhs=Add(d,c)),# e = d + c  ],ret=e)
  • Methodmlc.printer.to_python converts an IR node to Python-based text;
>>>print(mlcp.to_python(f))# Stringify to Pythondeff(a,b,c):d=a+be=d+creturne
  • Methodmlc.printer.print_python further renders the text with proper syntax highlighting. [Screenshot]
>>>mlcp.print_python(f)# Syntax highlighting

AST Parser. MLC has a concise set of APIs for implementing parser with Python's AST module, including:

  • Inspection API that obtains source code of a Python class or function and the variables they capture;
  • Variable management APIs that help with proper scoping;
  • AST fragment evaluation APIs;
  • Error rendering APIs.

[Example]. With MLC APIs, a parser can be implemented with 100 lines of code for the Python text format above defined by__ir_printer__.

🎯 Test IRs with MLC Structure-Aware Tooling

By annotating IR definitions withstructure, MLC supports structural equality and structural hashing to detect structural equivalence between IRs:

Define a toy IR with `structure`.
importmlc.dataclassesasmlcd@mlcd.py_classclassExpr(mlcd.PyClass):def__add__(self,other):returnAdd(a=self,b=other)@mlcd.py_class(structure="nobind")classAdd(Expr):a:Exprb:Expr@mlcd.py_class(structure="var")classVar(Expr):name:str=mlcd.field(structure=None)# excludes `name` from defined structure@mlcd.py_class(structure="bind")classLet(Expr):rhs:Exprlhs:Var=mlcd.field(structure="bind")# `Let.lhs` is the def-sitebody:Expr

Structural equality. Member methodeq_s compares the structural equality (alpha equivalence) of two IRs represented by MLC's structured dataclass.

>>>x,y,z=Var("x"),Var("y"),Var("z")>>>L1=Let(rhs=x+y,lhs=z,body=z)# let z = x + y; z>>>L2=Let(rhs=y+z,lhs=x,body=x)# let x = y + z; x>>>L3=Let(rhs=x+x,lhs=z,body=z)# let z = x + x; z>>>L1.eq_s(L2)True>>>L1.eq_s(L3,assert_mode=True)ValueError:Structuralequalitycheckfailedat {root}.rhs.b:Inconsistentbinding.RHShasbeenboundtoadifferentnodewhileLHSisnotbound

Structural hashing. The structure of MLC dataclasses can be hashed viahash_s, which guarantees if two dataclasses are alpha-equivalent, they will share the same structural hash:

>>>L1_hash,L2_hash,L3_hash=L1.hash_s(),L2.hash_s(),L3.hash_s()>>>assertL1_hash==L2_hash>>>assertL1_hash!=L3_hash

⚡ Migrate Gradually to C++ with MLC Plugins

(🚧 Under construction)

MLC seamlessly supports zero-copy bidirectional interoperabilty with C++ plugins with no extra dependency. By gradually migrating classes and methods one at a time, a pure Python prototype can be transitioned to hybrid or Python-free development.

⛽ Development

⚙️ Editable Build

pip install --verbose --editable".[dev]"pre-commit install

🎡 Create Wheels

This project usescibuildwheel to build cross-platform wheels. See.github/workflows/wheels.ym for more details.

export CIBW_BUILD_VERBOSITY=3export CIBW_BUILD="cp3*-manylinux_x86_64"python -m pip install pipxpipx run cibuildwheel==2.22.0 --output-dir wheelhouse

[8]ページ先頭

©2009-2025 Movatter.jp