Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Adding the Median algorithm Python Code#422

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Open
JVBravoo wants to merge1 commit intometafy-social:master
base:master
Choose a base branch
Loading
fromJVBravoo:branch-bravoo
Open
Show file tree
Hide file tree
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletionsscripts/Median_algorithm/Median.md
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
# Median Algorithm

###### It brings the median value of an array

## Run Script

The script already has the array hardcoded.

## Command to run the script

python3 Median_Algorithm.py
135 changes: 135 additions & 0 deletionsscripts/Median_algorithm/Median_Algorithm.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,135 @@
import random
def pick_pivot(l):
"""
Pick a good pivot within l, a list of numbers
This algorithm runs in O(n) time.
"""
assert len(l) > 0

# If there are < 5 items, just return the median
if len(l) < 5:
# In this case, we fall back on the first median function we wrote.
# Since we only run this on a list of 5 or fewer items, it doesn't
# depend on the length of the input and can be considered constant
# time.
return nlogn_median(l)

# First, we'll split `l` into groups of 5 items. O(n)
chunks = chunked(l, 5)

# For simplicity, we can drop any chunks that aren't full. O(n)
full_chunks = [chunk for chunk in chunks if len(chunk) == 5]


# Next, we sort each chunk. Each group is a fixed length, so each sort
# takes constant time. Since we have n/5 chunks, this operation
# is also O(n)
sorted_groups = [sorted(chunk) for chunk in full_chunks]

# The median of each chunk is at index 2
medians = [chunk[2] for chunk in sorted_groups]

# It's a bit circular, but I'm about to prove that finding
# the median of a list can be done in provably O(n).
# Finding the median of a list of length n/5 is a subproblem of size n/5
# and this recursive call will be accounted for in our analysis.
# We pass pick_pivot, our current function, as the pivot builder to
# quickselect. O(n)
median_of_medians = quickselect_median(medians, pick_pivot)
return median_of_medians


def chunked(l, chunk_size):
"""Split list `l` it to chunks of `chunk_size` elements."""
return [l[i:i + chunk_size] for i in range(0, len(l), chunk_size)]


def nlogn_median(l):
l = sorted(l)
if len(l) % 2 == 1:
return l[int((len(l) / 2))]
else:
return 0.5 * (l[len(l) / 2 - 1] + l[len(l) / 2])


def quickselect_median(l, pivot_fn=random.choice):
if len(l) % 2 == 1:
return quickselect(l, len(l) / 2, pivot_fn)
else:
return 0.5 * (quickselect(l, len(l) / 2 - 1, pivot_fn) +
quickselect(l, len(l) / 2, pivot_fn))


def quickselect(l, k, pivot_fn):
"""
Select the kth element in l (0 based)
:param l: List of numerics
:param k: Index
:param pivot_fn: Function to choose a pivot, defaults to random.choice
:return: The kth element of l
"""
if len(l) == 1:
assert k == 0
return l[0]

pivot = pivot_fn(l)

lows = [el for el in l if el < pivot]
highs = [el for el in l if el > pivot]
pivots = [el for el in l if el == pivot]

if k < len(lows):
return quickselect(lows, k, pivot_fn)
elif k < len(lows) + len(pivots):
# We got lucky and guessed the median
return pivots[0]
else:
return quickselect(highs, k - len(lows) - len(pivots), pivot_fn)


l = [9,1,0,2,3,4,6,8,7,10,5]

print(pick_pivot(l))

"""
Considere a lista abaixo. Gostaríamos de encontrar a mediana.
l = [9,1,0,2,3,4,6,8,7,10,5]
len (l) == 11, então estamos procurando pelo 6º menor elemento
Primeiro, devemos escolher um pivô. Selecionamos aleatoriamente o índice 3.
O valor neste índice é 2.

Particionamento com base no pivô:
[1,0,2], [9,3,4,6,8,7,10,5]
Queremos o 6º elemento. 6-len (esquerda) = 3, então queremos
o terceiro menor elemento na matriz certa

Agora estamos procurando o terceiro menor elemento na matriz abaixo:
[9,3,4,6,8,7,10,5]
Escolhemos um índice aleatoriamente para ser nosso pivô.
Escolhemos o índice 3, o valor em que, l [3] = 6

Particionamento com base no pivô:
[3,4,5,6] [9,7,10]
Queremos o terceiro menor elemento, então sabemos que é o
3º menor elemento na matriz esquerda

Agora estamos procurando o terceiro menor na matriz abaixo:
[3,4,5,6]
Escolhemos um índice aleatoriamente para ser nosso pivô.
Escolhemos o índice 1, o valor em que, l [1] = 4
Particionamento com base no pivô:
[3,4] [5,6]
Estamos procurando o item no índice 3, então sabemos que é
o menor na matriz certa.

Agora estamos procurando o menor elemento na matriz abaixo:
[5,6]

Neste ponto, podemos ter um caso base que escolhe a maior
ou item menor com base no índice.
Estamos procurando o menor item, que é 5.
retorno 5

Esse algoritmo roda em O(n)
http://people.csail.mit.edu/rivest/pubs/BFPRT73.pdf
"""

[8]ページ先頭

©2009-2025 Movatter.jp