Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Cleanup psd example.#23426

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Closed
anntzer wants to merge1 commit intomatplotlib:mainfromanntzer:psd
Closed
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 22 additions & 49 deletionsexamples/lines_bars_and_markers/psd_demo.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
"""
========
Psd Demo
PSD Demo
========

Plotting Power Spectral Density (PSD) in Matplotlib.
Expand All@@ -9,13 +9,12 @@
many useful libraries for computing a PSD. Below we demo a few examples
of how this can be accomplished and visualized with Matplotlib.
"""

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.gridspec as gridspec

# Fixing random state for reproducibility
np.random.seed(19680801)
np.random.seed(19680801) # Fix random state for reproducibility.

dt = 0.01
t = np.arange(0, 10, dt)
Expand All@@ -30,8 +29,6 @@
ax0.plot(t, s)
ax1.psd(s, 512, 1 / dt)

plt.show()

###############################################################################
# Compare this with the equivalent Matlab code to accomplish the same thing::
#
Expand All@@ -57,43 +54,35 @@
y = 10. * np.sin(2 * np.pi * 4 * t) + 5. * np.sin(2 * np.pi * 4.25 * t)
y = y + np.random.randn(*t.shape)

# Plot the raw time series
# Plot the raw time series.
fig = plt.figure(constrained_layout=True)
gs =gridspec.GridSpec(2, 3, figure=fig)
gs =fig.add_gridspec(2, 3)
ax = fig.add_subplot(gs[0, :])
ax.plot(t, y)
ax.set_xlabel('time [s]')
ax.set_ylabel('signal')
ax.set(xlabel='time [s]', ylabel='signal')

# Plot the PSD with different amounts of zero padding. This uses the entire
# time series at once
# time series at once.
ax2 = fig.add_subplot(gs[1, 0])
ax2.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs)
ax2.psd(y, NFFT=len(t), pad_to=len(t) * 2, Fs=fs)
ax2.psd(y, NFFT=len(t), pad_to=len(t) * 4, Fs=fs)
ax2.set_title('zero padding')
ax2.set(title='zero padding')

# Plot the PSD with different block sizes,Zero pad to the length of the
# Plot the PSD with different block sizes,zero pad to the length of the
# original data sequence.
ax3 = fig.add_subplot(gs[1, 1], sharex=ax2, sharey=ax2)
ax3.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs)
ax3.psd(y, NFFT=len(t) // 2, pad_to=len(t), Fs=fs)
ax3.psd(y, NFFT=len(t) // 4, pad_to=len(t), Fs=fs)
ax3.set_ylabel('')
ax3.set_title('block size')
ax3.set(ylabel='', title='block size')

# Plot the PSD with different amounts of overlap between blocks
# Plot the PSD with different amounts of overlap between blocks.
ax4 = fig.add_subplot(gs[1, 2], sharex=ax2, sharey=ax2)
ax4.psd(y, NFFT=len(t) // 2, pad_to=len(t), noverlap=0, Fs=fs)
ax4.psd(y, NFFT=len(t) // 2, pad_to=len(t),
noverlap=int(0.05 * len(t) / 2.), Fs=fs)
ax4.psd(y, NFFT=len(t) // 2, pad_to=len(t),
noverlap=int(0.2 * len(t) / 2.), Fs=fs)
ax4.set_ylabel('')
ax4.set_title('overlap')

plt.show()

ax4.psd(y, NFFT=len(t) // 2, pad_to=len(t), Fs=fs, noverlap=0)
ax4.psd(y, NFFT=len(t) // 2, pad_to=len(t), Fs=fs, noverlap=int(0.025*len(t)))
ax4.psd(y, NFFT=len(t) // 2, pad_to=len(t), Fs=fs, noverlap=int(0.1*len(t)))
ax4.set(ylabel='', title='overlap')

###############################################################################
# This is a ported version of a MATLAB example from the signal
Expand All@@ -115,22 +104,14 @@

ax0.psd(xn, NFFT=301, Fs=fs, window=mlab.window_none, pad_to=1024,
scale_by_freq=True)
ax0.set_title('Periodogram')
ax0.set_yticks(yticks)
ax0.set_xticks(xticks)
ax0.set(title='Periodogram', xticks=xticks, yticks=yticks, ylim=yrange)
ax0.grid(True)
ax0.set_ylim(yrange)

ax1.psd(xn, NFFT=150, Fs=fs, window=mlab.window_none, pad_to=512, noverlap=75,
scale_by_freq=True)
ax1.set_title('Welch')
ax1.set_xticks(xticks)
ax1.set_yticks(yticks)
ax1.set_ylabel('') # overwrite the y-label added by `psd`
ax1.set(title='Welch', xticks=xticks, yticks=yticks, ylim=yrange,
ylabel='') # overwrite the y-label added by `psd`
ax1.grid(True)
ax1.set_ylim(yrange)

plt.show()

###############################################################################
# This is a ported version of a MATLAB example from the signal
Expand All@@ -139,13 +120,11 @@
#
# It uses a complex signal so we can see that complex PSD's work properly.

prng = np.random.RandomState(19680801) # to ensure reproducibility

fs = 1000
t = np.linspace(0, 0.3, 301)
A = np.array([2, 8]).reshape(-1, 1)
f = np.array([150, 140]).reshape(-1, 1)
xn = (A * np.exp(2j * np.pi * f * t)).sum(axis=0) + 5 *prng.randn(*t.shape)
xn = (A * np.exp(2j * np.pi * f * t)).sum(0) + 5 *np.random.randn(*t.shape)

fig, (ax0, ax1) = plt.subplots(ncols=2, constrained_layout=True)

Expand All@@ -155,19 +134,13 @@

ax0.psd(xn, NFFT=301, Fs=fs, window=mlab.window_none, pad_to=1024,
scale_by_freq=True)
ax0.set_title('Periodogram')
ax0.set_yticks(yticks)
ax0.set_xticks(xticks)
ax0.set(title='Periodogram', xticks=xticks, yticks=yticks, ylim=yrange)
ax0.grid(True)
ax0.set_ylim(yrange)

ax1.psd(xn, NFFT=150, Fs=fs, window=mlab.window_none, pad_to=512, noverlap=75,
scale_by_freq=True)
ax1.set_title('Welch')
ax1.set_xticks(xticks)
ax1.set_yticks(yticks)
ax1.set_ylabel('') # overwrite the y-label added by `psd`
ax1.set(title='Welch', xticks=xticks, yticks=yticks, ylim=yrange,
ylabel='') # overwrite the y-label added by `psd`
ax1.grid(True)
ax1.set_ylim(yrange)

plt.show()

[8]ページ先頭

©2009-2025 Movatter.jp