
Implementation of a U-net complete with efficient attention as well as the latest research findings
importtorchfromx_unetimportXUnetunet=XUnet(dim=64,dim_mults= (1,2,4,8),nested_unet_depths= (7,4,2,1),# nested unet depths, from unet-squared paperconsolidate_upsample_fmaps=True,# whether to consolidate outputs from all upsample blocks, used in unet-squared paper)img=torch.randn(1,3,256,256)out=unet(img)# (1, 3, 256, 256)
For 3d (video or CT / MRI scans)
importtorchfromx_unetimportXUnetunet=XUnet(dim=64,frame_kernel_size=3,# set this to greater than 1dim_mults= (1,2,4,8),nested_unet_depths= (5,4,2,1),# nested unet depths, from unet-squared paperconsolidate_upsample_fmaps=True,# whether to consolidate outputs from all upsample blocks, used in unet-squared paperweight_standardize=True)video=torch.randn(1,3,10,128,128)# (batch, channels, frames, height, width)out=unet(video)# (1, 3, 10, 128, 128)
@article{Ronneberger2015UNetCN,title ={U-Net: Convolutional Networks for Biomedical Image Segmentation},author ={Olaf Ronneberger and Philipp Fischer and Thomas Brox},journal ={ArXiv},year ={2015},volume ={abs/1505.04597}}
@article{Qin2020U2NetGD,title ={U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection},author ={Xuebin Qin and Zichen Vincent Zhang and Chenyang Huang and Masood Dehghan and Osmar R Zaiane and Martin J{\"a}gersand},journal ={ArXiv},year ={2020},volume ={abs/2005.09007}}
@inproceedings{Henry2020QueryKeyNF,title ={Query-Key Normalization for Transformers},author ={Alex Henry and Prudhvi Raj Dachapally and Shubham Vivek Pawar and Yuxuan Chen},booktitle ={FINDINGS},year ={2020}}
@article{Qiao2019WeightS,title ={Weight Standardization},author ={Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Loddon Yuille},journal ={ArXiv},year ={2019},volume ={abs/1903.10520}}
@article{Shleifer2021NormFormerIT,title ={NormFormer: Improved Transformer Pretraining with Extra Normalization},author ={Sam Shleifer and Jason Weston and Myle Ott},journal ={ArXiv},year ={2021},volume ={abs/2110.09456}}
@article{Sunkara2022NoMS,title ={No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects},author ={Raja Sunkara and Tie Luo},journal ={ArXiv},year ={2022},volume ={abs/2208.03641}}