Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Code for the paper "Pose2Seg: Detection Free Human Instance Segmentation" @ CVPR2019.

License

NotificationsYou must be signed in to change notification settings

liruilong940607/Pose2Seg

Repository files navigation

Official code for the paper "Pose2Seg: Detection Free Human Instance Segmentation"[ProjectPage][arXiv] @ CVPR2019.

TheOCHuman dataset proposed in our paper is releasedhere

Pipeline of our pose-based instance segmentation framework.

Setup environment

pip install cython matplotlib tqdm opencv-python scipy pyyaml numpypip install torchvision torchcd~/github-public/cocoapi/PythonAPI/python setup.py build_ext installcd -

Download data

Note:person_keypoints_(train/val)2017_pose2seg.json is a subset ofperson_keypoints_(train/val)2017.json (inCOCO2017 Train/Val annotations). We choose those instances with both keypoint and segmentation annotations for our experiments.

Setup data

Thedata folder should be like this:

data  ├── coco2017│   ├── annotations  │   │   ├── person_keypoints_train2017_pose2seg.json │   │   ├── person_keypoints_val2017_pose2seg.json │   ├── train2017  │   │   ├── ####.jpg  │   ├── val2017  │   │   ├── ####.jpg  ├── OCHuman │   ├── annotations  │   │   ├── ochuman_coco_format_test_range_0.00_1.00.json   │   │   ├── ochuman_coco_format_val_range_0.00_1.00.json   │   ├── images  │   │   ├── ####.jpg

How to train

python train.py

Note: Currently we only support for single-gpu training.

How to test

This allows you to test the model on (1) COCOPersons val set and (2) OCHuman val & test set.

python test.py --weights last.pkl --coco --OCHuman

We retrained our model using this repo, and got similar results with our paper. The final weights can be downloadhere.

About Human Pose Templates in COCO

Pose templates clustered using K-means on COCO.

This repo already contains a template filemodeling/templates.json which was used in our paper. But you are free to explore different cluster parameters as discussed in our paper. Seevisualize_cluster.ipynb for an example.

About

Code for the paper "Pose2Seg: Detection Free Human Instance Segmentation" @ CVPR2019.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp