- Notifications
You must be signed in to change notification settings - Fork1
2d (N, Z) Atmospheric thermodynamic functions
License
leaver2000/nzthermo
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This work has been heavily inspired by the excellent work and code base that has been developed bytheMetPy
team. The concept of(N, Z)
is simply to solve forN
profiles ofZ
levels. Soregardless of what what you data looks like, if it can be reshaped to(N, Z)
then it can be usedwith this library. Where possible all iterations ofN
are run in parallel usingOpenMP
andCython
. Most of the root functions are written inC++
and wrapped withCython
for use inPython
.
Where this code currently lacks in complete documentation it makes up for with the extensive andverbose usage of type annotations. For example, theparcel_profile
function is defined as follows:
defparcel_profile(pressure:Pascal[np.ndarray[shape[Z],np.dtype[T]]|np.ndarray[shape[N,Z],np.dtype[T]]],temperature:Kelvin[np.ndarray[shape[N],np.dtype[np.floating[Any]]]],dewpoint:Kelvin[np.ndarray[shape[N],np.dtype[np.floating[Any]]]],/,*,step:float= ...,eps:float= ...,max_iters:int= ...,)->Kelvin[np.ndarray[shape[N,Z],np.dtype[T]]]: ...
Which make it quite clean that the pressure array is expected to be of shape(Z,)
or(N, Z)
andhave the units ofPascal
. The temperature and dewpoint arrays are expected to be of shape(N,)
and have the units ofKelvin
. The return value is expected to be of shape(N, Z)
and have theunits ofKelvin
.
The C++ source code usestemplates
&concepts
to support bothdouble
andfloat
data types.This requires when building from source that-std=c++20
is available. If working from an olderversion of Ubuntu you can update the defaultc++
compiler as such.
sudo apt update -ysudo apt install g++-10 -ysudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 60
The code can be installed into a virtual environment with the following commands.
python3.11 -m venv .venvsource .venv/bin/activatepip install git+https://github.com/leaver2000/nzthermo@master
A few notebooks have been included in a separate repository that can be foundhere.
...
There are some additional tools that useful for development. These can be installed with therequirements.dev.txt
file.
pip install -r requirements.dev.txt# dump the build directly into the src/ directory and generate the _version.pypip install --no-deps --upgrade --target src/. python setup.py build_ext --inplacepython setup.py clean --all build_ext --inplace
Unless otherwise specified, units are assumedsi
units.
TheCython
implementation of themoist_lapse
function supportspressure
arrays of shape(N,) | (Z,) | (1, Z) | (N, Z)
. The temperature array is raveled to a 1D array of shape(N,)
.nan
values are ignored in the calculation of the moist adiabatic lapse rate, this can be useful in masking out levels for a particular profile.
Ifreference_pressure
is not provided and thepressure
array is 2D, the reference pressurewill be determined by finding the first non-nan value in each row.
>>>pressure=np.array([ [1013.12,1000,975,950,925,900, ...], [1013.93,1000,975,950,925,900, ...], [np.nan,np.nan,975,950,925,900, ...]])*100.0# (N, Z) :: pressure profile>>>reference_pressure=pressure[np.arange(len(pressure)),np.argmin(np.isnan(pressure),axis=1)]>>>reference_pressurearray([101312.,101393.,97500. ])
importnumpyasnpimportmetpy.calcasmpcalcfrommetpy.unitsimportunitsimportnzthermoasnztN=1000Z=20P=np.linspace(101325,10000,Z)[np.newaxis, :]# (1, Z)T=np.random.uniform(300,200,N)# (N,)ml=nzt.moist_lapse(P,T)%timeitnzt.moist_lapse(P,T)# 1.22 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)P=P[0]*units.PaT=T*units.kelvinml_= [mpcalc.moist_lapse(P,T[i]).mforiinrange(N)]# type: ignore%timeit [mpcalc.moist_lapse(P,T[i]).mforiinrange(1000)]# 1.65 s ± 29.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)np.testing.assert_allclose(ml,ml_,rtol=1e-3)
P=np.random.uniform(101325,10000,1000)# (N,)T=np.random.uniform(300,200,1000)# (N,)Td=T-np.random.uniform(0,10,1000)# (N,)lcl_p,lcl_t=nzt.lcl(P,T,Td)# ((N,), (N,))%timeitnzt.lcl(P,T,Td)# 1.4 ms ± 373 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)P*=units.PaT*=units.kelvinTd*=units.kelvinlcl_p_,lcl_t_= (x.mforxinmpcalc.lcl(P,T,Td))# type: ignore%timeitmpcalc.lcl(P,T,Td)# 1.57 s ± 7.18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)np.testing.assert_allclose(lcl_p,lcl_p_,rtol=1e-3)np.testing.assert_allclose(lcl_t,lcl_t_,rtol=1e-3)
isobaric=xr.open_dataset("hrrr.t00z.wrfprsf00.grib2",engine="cfgrib",backend_kwargs={"filter_by_keys": {"typeOfLevel":"isobaricInhPa"}},)surface=xr.open_dataset("hrrr.t00z.wrfsfcf00.grib2",engine="cfgrib",backend_kwargs={"filter_by_keys": {"typeOfLevel":"surface","stepType":"instant"}},)T=isobaric["t"].to_numpy()# (K) (Z, Y, X)Z,Y,X=T.shapeN=Y*XT=T.reshape(Z,N).transpose()# (N, Z)P=isobaric["isobaricInhPa"].to_numpy().astype(np.float32)*100.0# (Pa)Q=isobaric["q"].to_numpy()# (kg/kg) (Z, Y, X)Q=Q.reshape(Z,N).transpose()# (N, Z)Td=nzt.dewpoint_from_specific_humidity(P[np.newaxis],Q)prof=nzt.parcel_profile(P,T[:,0],Td[:,0])CAPE,CIN=nzt.cape_cin(P,T,Td,prof)CAPE=CAPE.reshape(Y,X)CIN=CIN.reshape(Y,X)lat=isobaric["latitude"].to_numpy()lon=isobaric["longitude"].to_numpy()lon= (lon+180)%360-180timestamp=datetime.datetime.fromisoformat(isobaric["time"].to_numpy().astype(str).item())fig,axes=plt.subplots(2,2,figsize=(24,12),subplot_kw={"projection":ccrs.PlateCarree()})fig.suptitle(f"{timestamp:%Y-%m-%dT%H:%M:%SZ} | shape{Z,Y,X} | size{Z*Y*X:,}",fontsize=16,y=0.9)# I suspect that the difference between our cape calculations and the MRMS cape calculations is due# to the fact we are not actually starting at the surface or accounting for surface elevation.# leading to inflated cape values in areas of higher elevation.cape=np.where(CAPE<8000,CAPE,8000)cin=np.where(CIN>-1400,CIN,-1400)forax,data,title,cmapinzip(axes[0], [cape,cin], ["NZTHERMO CAPE","NZTHERMO CIN"], ["inferno","inferno_r"]):ax.coastlines(color="white",linewidth=0.25)ax.set_title(title,fontsize=16)ax.set_global()ax.set_extent([lon.min(),lon.max(),lat.min(),lat.max()])cf=ax.contourf(lon,lat,data,transform=ccrs.PlateCarree(),cmap=cmap)plt.colorbar(cf,ax=ax,orientation="vertical",pad=0.05,label="J/kg",shrink=0.75)MRMS_CAPE=surface["cape"].to_numpy()MRMS_CIN=surface["cin"].to_numpy()forax,data,title,cmapinzip(axes[1], [MRMS_CAPE,MRMS_CIN], ["MRMS CAPE","MRMS CIN"], ["inferno","inferno_r"]):ax.coastlines(color="white",linewidth=0.25)ax.set_title(title,fontsize=16)ax.set_global()ax.set_extent([lon.min(),lon.max(),lat.min(),lat.max()])cf=ax.contourf(lon,lat,data,transform=ccrs.PlateCarree(),cmap=cmap)plt.colorbar(cf,ax=ax,orientation="vertical",pad=0.05,label="J/kg",shrink=0.75)
importnumpyasnpimportnzthermoasnztpressure=np.array( [1013,1000,975,950,925,900,875,850,825,800,775,750,725,700,650,600,550,500,450,400,350,300],)# (Z,)pressure*=100temperature=np.array( [ [243,242,241,240,239,237,236,235,233,232,231,229,228,226,235,236,234,231,226,221,217,211], [250,249,248,247,246,244,243,242,240,239,238,236,235,233,240,239,236,232,227,223,217,211], [293,292,290,288,287,285,284,282,281,279,279,280,279,278,275,270,268,264,260,254,246,237], [300,299,297,295,293,291,292,291,291,289,288,286,285,285,281,278,273,268,264,258,251,242], ])# (N, Z)dewpoint=np.array( [ [224,224,224,224,224,223,223,223,223,222,222,222,221,221,233,233,231,228,223,218,213,207], [233,233,232,232,232,232,231,231,231,231,230,230,230,229,237,236,233,229,223,219,213,207], [288,288,287,286,281,280,279,277,276,275,270,258,244,247,243,254,262,248,229,232,229,224], [294,294,293,292,291,289,285,282,280,280,281,281,278,274,273,269,259,246,240,241,226,219], ])# (N, Z)nzt.downdraft_cape(pressure,temperature,dewpoint)#(N,)
importgcsfsimportnumpyasnpimportxarrayasxrimportmatplotlib.pyplotaspltimportnzthermoasnzt# configure matplotlibplt.rcParams["figure.figsize"]= (12,8)plt.rcParams["xtick.bottom"]=Falseplt.rcParams["ytick.left"]=Falseplt.rcParams["xtick.labelbottom"]=Falseplt.rcParams["ytick.labelleft"]=False# google cloud storage for access of large datasetsfs=gcsfs.GCSFileSystem(token="anon")mapper=fs.get_mapper("gs://weatherbench2/datasets/era5/1959-2023_01_10-wb13-6h-1440x721_with_derived_variables.zarr")ds=xr.open_zarr(mapper)pressure=ds.coords["level"].to_numpy().astype(np.float32)*100.0# (hPa -> Pa) (13,)temperature=ds["temperature"].isel(time=slice(0,30)).to_numpy().astype(np.float32)# (K) (30, 13, 721, 1440)specific_humidity=ds["specific_humidity"].isel(time=slice(0,30)).to_numpy().astype(np.float32)# (kg/kg) (30, 13, 721, 1440)# - weatherbench's levels are in reverse order# - non vertical dimensions are flattened like (T, Z, Y, X) -> (T*Y*X, Z) || (N, Z)P=pressure[::-1]Z=len(P)T=np.moveaxis(temperature[:, ::-1, :, :],1,-1).reshape(-1,Z)# (N, Z)Td=nzt.dewpoint_from_specific_humidity(P[np.newaxis, :],np.moveaxis(specific_humidity[:, ::-1, :, :],1,-1).reshape(-1,Z),)# (K) (N, Z)dcape=nzt.downdraft_cape(P,T,Td)# (N,)dcape=dcape.reshape((temperature.shape[0],)+temperature.shape[2:])# (T, Y, X)fig,axes=plt.subplots(dcape.shape[0]//3,3,figsize=(10,20))axes=axes.flatten()fori,axinenumerate(axes):ax.imshow(dcape[i],cmap="viridis")
pytest tests
In order to compile the cython code for test coverage the code must be compiled with the--coverage
flag. This will enable the appropriate compiler flags and macros that allow for code coverage. Thisalso disablesopenmp
which will cause the code to run significantly slower. Unit test can be runwithout the--coverage
flag but the coverage report will not be accurate.
python setup.py clean --all build_ext --inplace --coveragecoverage run -m pytestcoverage report -mName Stmts Miss Cover Missing------------------------------------------------------nzthermo/__init__.py 3 0 100%nzthermo/_c.pyx 112 7 94% 93-95, 196, 203, 222, 234nzthermo/_typing.py 11 0 100%nzthermo/const.py 32 0 100%nzthermo/core.py 192 56 71% 61, 96, 141-142, 270, 283, 300-346, 387-417, 440-441, 458nzthermo/functional.py 151 39 74% 31, 35, 38-39, 118-119, 132, 144-170, 182-189, 243, 275, 308, 310------------------------------------------------------TOTAL 501 102 80%