@@ -21,16 +21,16 @@ def plot_graph(test_df):
2121
2222def get_final_df (model ,data ):
2323"""
24- This function takes the `model` and `data` dict to
25- construct a final dataframe that includes the features along
24+ This function takes the `model` and `data` dict to
25+ construct a final dataframe that includes the features along
2626 with true and predicted prices of the testing dataset
2727 """
28- # if predicted future price is higher than the current,
28+ # if predicted future price is higher than the current,
2929# then calculate the true future price minus the current price, to get the buy profit
30- buy_profit = lambda current ,true_future , pred_future :true_future - current if pred_future > current else 0
30+ buy_profit = lambda current ,pred_future , true_future :true_future - current if pred_future > current else 0
3131# if the predicted future price is lower than the current price,
3232# then subtract the true future price from the current price
33- sell_profit = lambda current ,true_future , pred_future :current - true_future if pred_future < current else 0
33+ sell_profit = lambda current ,pred_future , true_future :current - true_future if pred_future < current else 0
3434X_test = data ["X_test" ]
3535y_test = data ["y_test" ]
3636# perform prediction and get prices
@@ -47,16 +47,16 @@ def get_final_df(model, data):
4747test_df .sort_index (inplace = True )
4848final_df = test_df
4949# add the buy profit column
50- final_df ["buy_profit" ]= list (map (buy_profit ,
51- final_df ["adjclose" ],
52- final_df [f"adjclose_{ LOOKUP_STEP } " ],
50+ final_df ["buy_profit" ]= list (map (buy_profit ,
51+ final_df ["adjclose" ],
52+ final_df [f"adjclose_{ LOOKUP_STEP } " ],
5353final_df [f"true_adjclose_{ LOOKUP_STEP } " ])
5454# since we don't have profit for last sequence, add 0's
5555 )
5656# add the sell profit column
57- final_df ["sell_profit" ]= list (map (sell_profit ,
58- final_df ["adjclose" ],
59- final_df [f"adjclose_{ LOOKUP_STEP } " ],
57+ final_df ["sell_profit" ]= list (map (sell_profit ,
58+ final_df ["adjclose" ],
59+ final_df [f"adjclose_{ LOOKUP_STEP } " ],
6060final_df [f"true_adjclose_{ LOOKUP_STEP } " ])
6161# since we don't have profit for last sequence, add 0's
6262 )
@@ -79,8 +79,8 @@ def predict(model, data):
7979
8080
8181# load the data
82- data = load_data (ticker ,N_STEPS ,scale = SCALE ,split_by_date = SPLIT_BY_DATE ,
83- shuffle = SHUFFLE ,lookup_step = LOOKUP_STEP ,test_size = TEST_SIZE ,
82+ data = load_data (ticker ,N_STEPS ,scale = SCALE ,split_by_date = SPLIT_BY_DATE ,
83+ shuffle = SHUFFLE ,lookup_step = LOOKUP_STEP ,test_size = TEST_SIZE ,
8484feature_columns = FEATURE_COLUMNS )
8585
8686# construct the model
@@ -129,4 +129,4 @@ def predict(model, data):
129129if not os .path .isdir (csv_results_folder ):
130130os .mkdir (csv_results_folder )
131131csv_filename = os .path .join (csv_results_folder ,model_name + ".csv" )
132- final_df .to_csv (csv_filename )
132+ final_df .to_csv (csv_filename )