- Notifications
You must be signed in to change notification settings - Fork9
An implementation of the Paillier cryptosystem using native JS implementation of BigInt
License
juanelas/paillier-bigint
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
An implementation of the Paillier cryptosystem relying on the native JS implementation of BigInt.
It can be used by anyWeb Browser or webview supporting BigInt and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js v11 or newer or enable at runtime withnode --experimental-worker
with Node.js version >= 10.5.0 and < 11.
The operations supported on BigInts are not constant time. BigInt can be thereforeunsuitable for use in cryptography. Many platforms provide native support for cryptography, such asWeb Cryptography API orNode.js Crypto.
The Paillier cryptosystem, named after and invented by Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. A notable feature of the Paillier cryptosystem is its homomorphic properties.
The product of two ciphertexts will decrypt to the sum of their corresponding plaintexts,
D( E(m1) · E(m2) ) mod n2 = m1 + m2 mod n
The product of a ciphertext with a plaintext raising g will decrypt to the sum of the corresponding plaintexts,
D( E(m1) · gm2 ) mod n2 = m1 + m2 mod n
An encrypted plaintext raised to the power of another plaintext will decrypt to the product of the two plaintexts,
D( E(m1)m2 mod n2 ) = m1 · m2 mod n,
D( E(m2)m1 mod n2 ) = m1 · m2 mod n.
More generally, an encrypted plaintext raised to a constant k will decrypt to the product of the plaintext and theconstant,
D( E(m1)k mod n2 ) = k · m1 mod n.
However, given the Paillier encryptions of two messages there is no known way to compute an encryption of the product ofthese messages without knowing the private key.
- Define the bit length of the modulus
n
, orkeyLength
in bits. - Choose two large prime numbers
p
andq
randomly and independently of each other such thatgcd( p·q, (p-1)(q-1) )=1
andn=p·q
has a key length of keyLength. For instance:- Generate a random prime
p
with a bit length ofkeyLength/2 + 1
. - Generate a random prime
q
with a bit length ofkeyLength/2
. - Repeat until the bitlength of
n=p·q
iskeyLength
.
- Generate a random prime
- Compute parameters
λ
,g
andμ
. Among other ways, it can be done as follows:- Standard approach:
- Compute
λ = lcm(p-1, q-1)
withlcm(a, b) = a·b / gcd(a, b)
. - Generate randoms
α
andβ
inZ*
ofn
, and select generatorg
inZ*
ofn**2
asg = ( α·n + 1 ) β**n mod n**2
. - Compute
μ = ( L( g^λ mod n**2 ) )**(-1) mod n
whereL(x)=(x-1)/n
.
- Compute
- If using p,q of equivalent length, a simpler variant would be:
λ = (p-1, q-1)
g = n+1
μ = λ**(-1) mod n
- Standard approach:
Thepublic (encryption)key is(n, g).
Theprivate (decryption)key is(λ, μ).
Letm
in[0, n)
be the clear-text message,
Select random integer
r
inZ*
ofn
.Compute ciphertext as:
c = g**m · r**n mod n**2
Letc
be the ciphertext to decrypt, wherec
in(0, n**2)
.
- Compute the plaintext message as:
m = L( c**λ mod n**2 ) · μ mod n
paillier-bigint
can be imported to your project withnpm
:
npm install paillier-bigint
Then either require (Node.js CJS):
constpaillierBigint=require('paillier-bigint')
or import (JavaScript ES module):
import*aspaillierBigintfrom'paillier-bigint'
The appropriate version for browser or node is automatically exported.
You can also download theIIFE bundle, theESM bundle or theUMD bundle and manually add it to your project, or, if you have already importedpaillier-bigint
to your project, just get the bundles fromnode_modules/paillier-bigint/dist/bundles/
.
An example of usage could be:
asyncfunctionpaillierTest(){// (asynchronous) creation of a random private, public key pair for the Paillier cryptosystemconst{ publicKey, privateKey}=awaitpaillierBigint.generateRandomKeys(3072)// Optionally, you can create your public/private keys from known parameters// const publicKey = new paillierBigint.PublicKey(n, g)// const privateKey = new paillierBigint.PrivateKey(lambda, mu, publicKey)constm1=12345678901234567890nconstm2=5n// encryption/decryptionconstc1=publicKey.encrypt(m1)console.log(privateKey.decrypt(c1))// 12345678901234567890n// homomorphic addition of two ciphertexts (encrypted numbers)constc2=publicKey.encrypt(m2)constencryptedSum=publicKey.addition(c1,c2)console.log(privateKey.decrypt(encryptedSum))// m1 + m2 = 12345678901234567895n// multiplication by kconstk=10nconstencryptedMul=publicKey.multiply(c1,k)console.log(privateKey.decrypt(encryptedMul))// k · m1 = 123456789012345678900n}paillierTest()
Consider usingbigint-conversion if you need to convert from/to bigint to/from unicode text, hex, buffer.
About
An implementation of the Paillier cryptosystem using native JS implementation of BigInt