- Notifications
You must be signed in to change notification settings - Fork0
Basic Cheat Sheet for Python (PDF, Markdown and Jupyter Notebook)
License
jolugama/python-cheatsheet
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Basic cheatsheet for Python mostly based on the book written by Al Sweigart,Automate the Boring Stuff with Python under theCreative Commons license and many other sources.
All contributions are welcome:
- Read the issues, Fork the project and do a Pull Request.
- Request a new topic creating a
New issuewith theenhancementtag. - Find any kind of errors in the cheat sheet and create a
New issuewith the details or fork the project and do a Pull Request. - Suggest a better or more pythonic way for existing examples.
- About
- Contribute
- Read It
- Python Cheatsheet
- The Zen of Python
- Python Basics
- Flow Control
- Comparison Operators
- Boolean evaluation
- Boolean Operators
- Mixing Boolean and Comparison Operators
- if Statements
- else Statements
- elif Statements
- while Loop Statements
- break Statements
- continue Statements
- for Loops and the range() Function
- For else statement
- Importing Modules
- Ending a Program Early with sys.exit()
- Functions
- Exception Handling
- Lists
- Getting Individual Values in a List with Indexes
- Negative Indexes
- Getting Sublists with Slices
- Getting a List’s Length with len()
- Changing Values in a List with Indexes
- List Concatenation and List Replication
- Removing Values from Lists with del Statements
- Using for Loops with Lists
- Looping Through Multiple Lists with zip()
- The in and not in Operators
- The Multiple Assignment Trick
- Augmented Assignment Operators
- Finding a Value in a List with the index() Method
- Adding Values to Lists with the append() and insert() Methods
- Removing Values from Lists with remove()
- Removing Values from Lists with pop()
- Sorting the Values in a List with the sort() Method
- Tuple Data Type
- Converting Types with the list() and tuple() Functions
- Dictionaries and Structuring Data
- sets
- itertools Module
- Comprehensions
- Manipulating Strings
- Escape Characters
- Raw Strings
- Multiline Strings with Triple Quotes
- Indexing and Slicing Strings
- The in and not in Operators with Strings
- The in and not in Operators with list
- The upper(), lower(), isupper(), and islower() String Methods
- The isX String Methods
- The startswith() and endswith() String Methods
- The join() and split() String Methods
- Justifying Text with rjust(), ljust(), and center()
- Removing Whitespace with strip(), rstrip(), and lstrip()
- Copying and Pasting Strings with the pyperclip Module (need pip install)
- String Formatting
- Regular Expressions
- Matching Regex Objects
- Grouping with Parentheses
- Matching Multiple Groups with the Pipe
- Optional Matching with the Question Mark
- Matching Zero or More with the Star
- Matching One or More with the Plus
- Matching Specific Repetitions with Curly Brackets
- Greedy and Nongreedy Matching
- The findall() Method
- Making Your Own Character Classes
- The Caret and Dollar Sign Characters
- The Wildcard Character
- Matching Everything with Dot-Star
- Matching Newlines with the Dot Character
- Review of Regex Symbols
- Case-Insensitive Matching
- Substituting Strings with the sub() Method
- Managing Complex Regexes
- Handling File and Directory Paths
- Backslash on Windows and Forward Slash on OS X and Linux
- The Current Working Directory
- Creating New Folders
- Absolute vs. Relative Paths
- Handling Absolute and Relative Paths
- Checking Path Validity
- Finding File Sizes and Folder Contents
- Copying Files and Folders
- Moving and Renaming Files and Folders
- Permanently Deleting Files and Folders
- Safe Deletes with the send2trash Module
- Walking a Directory Tree
- Reading and Writing Files
- JSON, YAML and configuration files
- Debugging
- Lambda Functions
- Ternary Conditional Operator
- args and kwargs
- Context Manager
__main__Top-level script environment- setup.py
- Dataclasses
- Virtual Environment
From thePEP 20 -- The Zen of Python:
Long time Pythoneer Tim Peters succinctly channels the BDFL's guiding principles for Python's design into 20 aphorisms, only 19 of which have been written down.
>>>importthisTheZenofPython,byTimPetersBeautifulisbetterthanugly.Explicitisbetterthanimplicit.Simpleisbetterthancomplex.Complexisbetterthancomplicated.Flatisbetterthannested.Sparseisbetterthandense.Readabilitycounts.Specialcasesaren'tspecialenoughtobreaktherules.Althoughpracticalitybeatspurity.Errorsshouldneverpasssilently.Unlessexplicitlysilenced.Inthefaceofambiguity,refusethetemptationtoguess.Thereshouldbeone--andpreferablyonlyone--obviouswaytodoit.Althoughthatwaymaynotbeobviousatfirstunlessyou'reDutch.Nowisbetterthannever.Althoughneverisoftenbetterthan*right*now.Iftheimplementationishardtoexplain,it'sabadidea.Iftheimplementationiseasytoexplain,itmaybeagoodidea.Namespacesareonehonkinggreatidea--let'sdomoreofthose!
FromHighest toLowest precedence:
| Operators | Operation | Example |
|---|---|---|
| ** | Exponent | 2 ** 3 = 8 |
| % | Modulus/Remainder | 22 % 8 = 6 |
| // | Integer division | 22 // 8 = 2 |
| / | Division | 22 / 8 = 2.75 |
| * | Multiplication | 3 * 3 = 9 |
| - | Subtraction | 5 - 2 = 3 |
| + | Addition | 2 + 2 = 4 |
Examples of expressions in the interactive shell:
>>>2+3*620
>>> (2+3)*630
>>>2**8256
>>>23//73
>>>23%72
>>> (5-1)* ((7+1)/ (3-1))16.0
| Data Type | Examples |
|---|---|
| Integers | -2, -1, 0, 1, 2, 3, 4, 5 |
| Floating-point numbers | -1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25 |
| Strings | 'a', 'aa', 'aaa', 'Hello!', '11 cats' |
String concatenation:
>>>'Alice''Bob''AliceBob'
Note: Avoid+ operator for string concatenation. Prefer string formatting.
String Replication:
>>>'Alice'*5'AliceAliceAliceAliceAlice'
You can name a variable anything as long as it obeys the following rules:
- It can be only one word.
- It can use only letters, numbers, and the underscore (
_) character. - It can’t begin with a number.
- Variable name starting with an underscore (
_) are considered as "unuseful`.
Example:
>>>spam='Hello'>>>spam'Hello'
>>>_spam='Hello'
_spam should not be used again in the code.
Inline comment:
# This is a commentMultiline comment:
# This is a# multiline comment
Code with a comment:
a=1# initialization
Please note the two spaces in front of the comment.
Function docstring:
deffoo():""" This is a function docstring You can also use: ''' Function Docstring ''' """
>>>print('Hello world!')Helloworld!
>>>a=1>>>print('Hello world!',a)Helloworld!1
Example Code:
>>>print('What is your name?')# ask for their name>>>myName=input()>>>print('It is good to meet you, {}'.format(myName))Whatisyourname?AlItisgoodtomeetyou,Al
Evaluates to the integer value of the number of characters in a string:
>>>len('hello')5
Note: test of emptiness of strings, lists, dictionary, etc, shouldnot use len, but prefer directboolean evaluation.
>>>a= [1,2,3]>>>ifa:>>>print("the list is not empty!")
Integer to String or Float:
>>>str(29)'29'
>>>print('I am {} years old.'.format(str(29)))Iam29yearsold.
>>>str(-3.14)'-3.14'
Float to Integer:
>>>int(7.7)7
>>>int(7.7)+18
| Operator | Meaning |
|---|---|
== | Equal to |
!= | Not equal to |
< | Less than |
> | Greater Than |
<= | Less than or Equal to |
>= | Greater than or Equal to |
These operators evaluate to True or False depending on the values you give them.
Examples:
>>>42==42True
>>>40==42False
>>>'hello'=='hello'True
>>>'hello'=='Hello'False
>>>'dog'!='cat'True
>>>42==42.0True
>>>42=='42'False
Never use== or!= operator to evaluate boolean operation. Use theis oris not operators,or use implicit boolean evaluation.
NO (even if they are valid Python):
>>>True==TrueTrue
>>>True!=FalseTrue
YES (even if they are valid Python):
>>>TrueisTrueTrue
>>>TrueisnotFalseTrue
These statements are equivalent:
>>>ifaisTrue:>>>pass>>>ifaisnotFalse:>>>pass>>>ifa:>>>pass
And these as well:
>>>ifaisFalse:>>>pass>>>ifaisnotTrue:>>>pass>>>ifnota:>>>pass
There are three Boolean operators: and, or, and not.
Theand Operator’sTruth Table:
| Expression | Evaluates to |
|---|---|
True and True | True |
True and False | False |
False and True | False |
False and False | False |
Theor Operator’sTruth Table:
| Expression | Evaluates to |
|---|---|
True or True | True |
True or False | True |
False or True | True |
False or False | False |
Thenot Operator’sTruth Table:
| Expression | Evaluates to |
|---|---|
not True | False |
not False | True |
>>> (4<5)and (5<6)True
>>> (4<5)and (9<6)False
>>> (1==2)or (2==2)True
You can also use multiple Boolean operators in an expression, along with the comparison operators:
>>>2+2==4andnot2+2==5and2*2==2+2True
ifname=='Alice':print('Hi, Alice.')
name='Bob'ifname=='Alice':print('Hi, Alice.')else:print('Hello, stranger.')
name='Bob'age=5ifname=='Alice':print('Hi, Alice.')elifage<12:print('You are not Alice, kiddo.')
name='Bob'age=30ifname=='Alice':print('Hi, Alice.')elifage<12:print('You are not Alice, kiddo.')else:print('You are neither Alice nor a little kid.')
spam=0whilespam<5:print('Hello, world.')spam=spam+1
If the execution reaches a break statement, it immediately exits the while loop’s clause:
whileTrue:print('Please type your name.')name=input()ifname=='your name':breakprint('Thank you!')
When the program execution reaches a continue statement, the program execution immediately jumps back to the start of the loop.
whileTrue:print('Who are you?')name=input()ifname!='Joe':continueprint('Hello, Joe. What is the password? (It is a fish.)')password=input()ifpassword=='swordfish':breakprint('Access granted.')
>>>print('My name is')>>>foriinrange(5):>>>print('Jimmy Five Times ({})'.format(str(i)))MynameisJimmyFiveTimes (0)JimmyFiveTimes (1)JimmyFiveTimes (2)JimmyFiveTimes (3)JimmyFiveTimes (4)
Therange() function can also be called with three arguments. The first two arguments will be the start and stop values, and the third will be the step argument. The step is the amount that the variable is increased by after each iteration.
>>>foriinrange(0,10,2):>>>print(i)02468
You can even use a negative number for the step argument to make the for loop count down instead of up.
>>>foriinrange(5,-1,-1):>>>print(i)543210
This allows to specify a statement to execute in case of the full loop has been executed. Onlyuseful when abreak condition can occur in the loop:
>>>foriin [1,2,3,4,5]:>>>ifi==3:>>>break>>>else:>>>print("only executed when no item of the list is equal to 3")
importrandomforiinrange(5):print(random.randint(1,10))
importrandom,sys,os,math
fromrandomimport*
importsyswhileTrue:print('Type exit to exit.')response=input()ifresponse=='exit':sys.exit()print('You typed {}.'.format(response))
>>>defhello(name):>>>print('Hello {}'.format(name))>>>>>>hello('Alice')>>>hello('Bob')HelloAliceHelloBob
When creating a function using the def statement, you can specify what the return value should be with a return statement. A return statement consists of the following:
The return keyword.
The value or expression that the function should return.
importrandomdefgetAnswer(answerNumber):ifanswerNumber==1:return'It is certain'elifanswerNumber==2:return'It is decidedly so'elifanswerNumber==3:return'Yes'elifanswerNumber==4:return'Reply hazy try again'elifanswerNumber==5:return'Ask again later'elifanswerNumber==6:return'Concentrate and ask again'elifanswerNumber==7:return'My reply is no'elifanswerNumber==8:return'Outlook not so good'elifanswerNumber==9:return'Very doubtful'r=random.randint(1,9)fortune=getAnswer(r)print(fortune)
>>>spam=print('Hello!')Hello!
>>>spamisNoneTrue
Note: never compare toNone with the== operator. Always useis.
>>>print('Hello',end='')>>>print('World')HelloWorld
>>>print('cats','dogs','mice')catsdogsmice
>>>print('cats','dogs','mice',sep=',')cats,dogs,mice
Code in the global scope cannot use any local variables.
However, a local scope can access global variables.
Code in a function’s local scope cannot use variables in any other local scope.
You can use the same name for different variables if they are in different scopes. That is, there can be a local variable named spam and a global variable also named spam.
If you need to modify a global variable from within a function, use the global statement:
>>>defspam():>>>globaleggs>>>eggs='spam'>>>>>>eggs='global'>>>spam()>>>print(eggs)spam
There are four rules to tell whether a variable is in a local scope or global scope:
If a variable is being used in the global scope (that is, outside of all functions), then it is always a global variable.
If there is a global statement for that variable in a function, it is a global variable.
Otherwise, if the variable is used in an assignment statement in the function, it is a local variable.
But if the variable is not used in an assignment statement, it is a global variable.
>>>defspam(divideBy):>>>try:>>>return42/divideBy>>>exceptZeroDivisionErrorase:>>>print('Error: Invalid argument: {}'.format(e))>>>>>>print(spam(2))>>>print(spam(12))>>>print(spam(0))>>>print(spam(1))21.03.5Error:Invalidargument:divisionbyzeroNone42.0
Code inside thefinally section is always executed, no matter if an exception has been raised ornot, and even if an exception is not caught.
>>>defspam(divideBy):>>>try:>>>return42/divideBy>>>exceptZeroDivisionErrorase:>>>print('Error: Invalid argument: {}'.format(e))>>>finally:>>>print("-- division finished --")>>>print(spam(2))--divisionfinished--21.0>>>print(spam(12))--divisionfinished--3.5>>>print(spam(0))Error:InvalidArgumentdivisionbyzero--divisionfinished--None>>>print(spam(1))--divisionfinished--42.0
>>>spam= ['cat','bat','rat','elephant']>>>spam['cat','bat','rat','elephant']
>>>spam= ['cat','bat','rat','elephant']>>>spam[0]'cat'
>>>spam[1]'bat'
>>>spam[2]'rat'
>>>spam[3]'elephant'
>>>spam= ['cat','bat','rat','elephant']>>>spam[-1]'elephant'
>>>spam[-3]'bat'
>>>'The {} is afraid of the {}.'.format(spam[-1],spam[-3])'The elephant is afraid of the bat.'
>>>spam= ['cat','bat','rat','elephant']>>>spam[0:4]['cat','bat','rat','elephant']
>>>spam[1:3]['bat','rat']
>>>spam[0:-1]['cat','bat','rat']
>>>spam= ['cat','bat','rat','elephant']>>>spam[:2]['cat','bat']
>>>spam[1:]['bat','rat','elephant']
Slicing the complete list will perform a copy:
>>>spam2=spam[:]['cat','bat','rat','elephant']>>>spam.append('dog')>>>spam['cat','bat','rat','elephant','dog']>>>spam2['cat','bat','rat','elephant']
>>>spam= ['cat','dog','moose']>>>len(spam)3
>>>spam= ['cat','bat','rat','elephant']>>>spam[1]='aardvark'>>>spam['cat','aardvark','rat','elephant']>>>spam[2]=spam[1]>>>spam['cat','aardvark','aardvark','elephant']>>>spam[-1]=12345>>>spam['cat','aardvark','aardvark',12345]
>>> [1,2,3]+ ['A','B','C'][1,2,3,'A','B','C']>>> ['X','Y','Z']*3['X','Y','Z','X','Y','Z','X','Y','Z']>>>spam= [1,2,3]>>>spam=spam+ ['A','B','C']>>>spam[1,2,3,'A','B','C']
>>>spam= ['cat','bat','rat','elephant']>>>delspam[2]>>>spam['cat','bat','elephant']
>>>delspam[2]>>>spam['cat','bat']
>>>supplies= ['pens','staplers','flame-throwers','binders']>>>fori,supplyinenumerate(supplies):>>>print('Index {} in supplies is: {}'.format(str(i),supply))Index0insuppliesis:pensIndex1insuppliesis:staplersIndex2insuppliesis:flame-throwersIndex3insuppliesis:binders
>>>name= ['Pete','John','Elizabeth']>>>age= [6,23,44]>>>forn,ainzip(name,age):>>>print('{} is {} years old'.format(n,a))Peteis6yearsoldJohnis23yearsoldElizabethis44yearsold
>>>'howdy'in ['hello','hi','howdy','heyas']True
>>>spam= ['hello','hi','howdy','heyas']>>>'cat'inspamFalse
>>>'howdy'notinspamFalse
>>>'cat'notinspamTrue
The multiple assignment trick is a shortcut that lets you assign multiple variables with the values in a list in one line of code. So instead of doing this:
>>>cat= ['fat','orange','loud']>>>size=cat[0]>>>color=cat[1]>>>disposition=cat[2]
You could type this line of code:
>>>cat= ['fat','orange','loud']>>>size,color,disposition=cat
The multiple assignment trick can also be used to swap the values in two variables:
>>>a,b='Alice','Bob'>>>a,b=b,a>>>print(a)'Bob'
>>>print(b)'Alice'
| Operator | Equivalent |
|---|---|
spam += 1 | spam = spam + 1 |
spam -= 1 | spam = spam - 1 |
spam *= 1 | spam = spam * 1 |
spam /= 1 | spam = spam / 1 |
spam %= 1 | spam = spam % 1 |
Examples:
>>>spam='Hello'>>>spam+=' world!'>>>spam'Hello world!'>>>bacon= ['Zophie']>>>bacon*=3>>>bacon['Zophie','Zophie','Zophie']
>>>spam= ['Zophie','Pooka','Fat-tail','Pooka']>>>spam.index('Pooka')1
append():
>>>spam= ['cat','dog','bat']>>>spam.append('moose')>>>spam['cat','dog','bat','moose']
insert():
>>>spam= ['cat','dog','bat']>>>spam.insert(1,'chicken')>>>spam['cat','chicken','dog','bat']
>>>spam= ['cat','bat','rat','elephant']>>>spam.remove('bat')>>>spam['cat','rat','elephant']
If the value appears multiple times in the list, only the first instance of the value will be removed.
>>>spam= ['cat','bat','rat','elephant']>>>spam.pop()'elephant'>>>spam['cat','bat','rat']>>>spam.pop(0)'cat'>>>spam['bat','rat']
>>>spam= [2,5,3.14,1,-7]>>>spam.sort()>>>spam[-7,1,2,3.14,5]
>>>spam= ['ants','cats','dogs','badgers','elephants']>>>spam.sort()>>>spam['ants','badgers','cats','dogs','elephants']
You can also pass True for the reverse keyword argument to have sort() sort the values in reverse order:
>>>spam.sort(reverse=True)>>>spam['elephants','dogs','cats','badgers','ants']
If you need to sort the values in regular alphabetical order, pass str. lower for the key keyword argument in the sort() method call:
>>>spam= ['a','z','A','Z']>>>spam.sort(key=str.lower)>>>spam['a','A','z','Z']
You can use the built-in functionsorted to return a new list:
>>>spam= ['ants','cats','dogs','badgers','elephants']>>>sorted(spam)['ants','badgers','cats','dogs','elephants']
>>>eggs= ('hello',42,0.5)>>>eggs[0]'hello'
>>>eggs[1:3](42,0.5)
>>>len(eggs)3
The main way that tuples are different from lists is that tuples, like strings, are immutable.
>>>tuple(['cat','dog',5])('cat','dog',5)
>>>list(('cat','dog',5))['cat','dog',5]
>>>list('hello')['h','e','l','l','o']
Example Dictionary:
myCat= {'size':'fat','color':'gray','disposition':'loud'}
values():
>>>spam= {'color':'red','age':42}>>>forvinspam.values():>>>print(v)red42
keys():
>>>forkinspam.keys():>>>print(k)colorage
items():
>>>foriinspam.items():>>>print(i)('color','red')('age',42)
Using the keys(), values(), and items() methods, a for loop can iterate over the keys, values, or key-value pairs in a dictionary, respectively.
>>>spam= {'color':'red','age':42}>>>>>>fork,vinspam.items():>>>print('Key: {} Value: {}'.format(k,str(v)))Key:ageValue:42Key:colorValue:red
>>>spam= {'name':'Zophie','age':7}
>>>'name'inspam.keys()True
>>>'Zophie'inspam.values()True
>>># You can omit the call to keys() when checking for a key>>>'color'inspamFalse
>>>'color'notinspamTrue
Get has two parameters: key and default value if the key did not exist
>>>picnic_items= {'apples':5,'cups':2}>>>'I am bringing {} cups.'.format(str(picnic_items.get('cups',0)))'I am bringing 2 cups.'
>>>'I am bringing {} eggs.'.format(str(picnic_items.get('eggs',0)))'I am bringing 0 eggs.'
Let's consider this code:
spam= {'name':'Pooka','age':5}if'color'notinspam:spam['color']='black'
Usingsetdefault we could write the same code more succinctly:
>>>spam= {'name':'Pooka','age':5}>>>spam.setdefault('color','black')'black'
>>>spam{'color':'black','age':5,'name':'Pooka'}
>>>spam.setdefault('color','white')'black'
>>>spam{'color':'black','age':5,'name':'Pooka'}
>>>importpprint>>>>>>message= 'ItwasabrightcolddayinApril,andtheclockswerestriking>>>thirteen.'>>>count= {}>>>>>>forcharacterinmessage:>>>count.setdefault(character,0)>>>count[character]=count[character]+1>>>>>>pprint.pprint(count){' ':13,',':1,'.':1,'A':1,'I':1,'a':4,'b':1,'c':3,'d':3,'e':5,'g':2,'h':3,'i':6,'k':2,'l':3,'n':4,'o':2,'p':1,'r':5,'s':3,'t':6,'w':2,'y':1}
# in Python 3.5+:>>>x= {'a':1,'b':2}>>>y= {'b':3,'c':4}>>>z= {**x,**y}>>>z{'c':4,'a':1,'b':3}# in Python 2.7>>>z=dict(x,**y)>>>z{'c':4,'a':1,'b':3}
From the Python 3documentation
A set is an unordered collection with no duplicate elements. Basic uses include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like union, intersection, difference, and symmetric difference.
There are two ways to create sets: using curly braces{} and the built-in functionset()
>>>s= {1,2,3}>>>s=set([1,2,3])
When creating an empty set, be sure to not use the curly braces{} or you will get an empty dictionary instead.
>>>s= {}>>> type(s)<class'dict'>
A set automatically remove all the duplicate values.
>>>s= {1,2,3,2,3,4}>>>s{1,2,3,4}
And as an unordered data type, they can't be indexed.
>>>s= {1,2,3}>>>s[0]Traceback (mostrecentcalllast):File"<stdin>",line1,in<module>TypeError:'set'objectdoesnotsupportindexing>>>
Using theadd() method we can add a single element to the set.
>>>s= {1,2,3}>>>s.add(4)>>>s{1,2,3,4}
And withupdate(), multiple ones .
>>>s= {1,2,3}>>>s.update([2,3,4,5,6])>>>s{1,2,3,4,5,6}# remember, sets automatically remove duplicates
Both methods will remove an element from the set, butremove() will raise akey error if the value doesn't exist.
>>>s= {1,2,3}>>>s.remove(3)>>>s{1,2}>>>s.remove(3)Traceback (mostrecentcalllast):File"<stdin>",line1,in<module>KeyError:3
discard() won't raise any errors.
>>>s= {1,2,3}>>>s.discard(3)>>>s{1,2}>>>s.discard(3)>>>
union() or| will create a new set that contains all the elements from the sets provided.
>>>s1= {1,2,3}>>>s2= {3,4,5}>>>s1.union(s2)# or 's1 | s2'{1,2,3,4,5}
intersection or& will return a set containing only the elements that are common to all of them.
>>>s1= {1,2,3}>>>s2= {2,3,4}>>>s3= {3,4,5}>>>s1.intersection(s2,s3)# or 's1 & s2 & s3'{3}
difference or- will return only the elements that are unique to the first set (invoked set).
>>>s1= {1,2,3}>>>s2= {2,3,4}>>>s1.difference(s2)# or 's1 - s2'{1}>>>s2.difference(s1)# or 's2 - s1'{4}
symetric_difference or^ will return all the elements that are not common between them.
>>>s1= {1,2,3}>>>s2= {2,3,4}>>>s1.symmetric_difference(s2)# or 's1 ^ s2'{1,4}
Theitertools module is a collection of tools intended to be fast and use memory efficiently when handling iterators (likelists ordictionaries).
From the officialPython 3.x documentation:
The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination. Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently in pure Python.
Theitertools module comes in the standard library and must be imported.
Theoperator module will also be used. This module is not necessary when using itertools, but needed for some of the examples below.
Makes an iterator that returns the results of a function.
itertools.accumulate(iterable[,func])
Example:
>>>data= [1,2,3,4,5]>>>result=itertools.accumulate(data,operator.mul)>>>foreachinresult:>>>print(each)12624120
The operator.mul takes two numbers and multiplies them:
operator.mul(1,2)2operator.mul(2,3)6operator.mul(6,4)24operator.mul(24,5)120
Passing a function is optional:
>>>data= [5,2,6,4,5,9,1]>>>result=itertools.accumulate(data)>>>foreachinresult:>>>print(each)571317223132
If no function is designated the items will be summed:
55+2=77+6=1313+4=1717+5=2222+9=3131+1=32
Takes an iterable and a integer. This will create all the unique combination that have r members.
itertools.combinations(iterable,r)
Example:
>>>shapes= ['circle','triangle','square',]>>>result=itertools.combinations(shapes,2)>>>foreachinresult:>>>print(each)('circle','triangle')('circle','square')('triangle','square')
Just like combinations(), but allows individual elements to be repeated more than once.
itertools.combinations_with_replacement(iterable,r)
Example:
>>>shapes= ['circle','triangle','square']>>>result=itertools.combinations_with_replacement(shapes,2)>>>foreachinresult:>>>print(each)('circle','circle')('circle','triangle')('circle','square')('triangle','triangle')('triangle','square')('square','square')
Makes an iterator that returns evenly spaced values starting with number start.
itertools.count(start=0,step=1)
Example:
>>>foriinitertools.count(10,3):>>>print(i)>>>ifi>20:>>>break1013161922
This function cycles through an iterator endlessly.
itertools.cycle(iterable)
Example:
>>>colors= ['red','orange','yellow','green','blue','violet']>>>forcolorinitertools.cycle(colors):>>>print(color)redorangeyellowgreenbluevioletredorange
When reached the end of the iterable it start over again from the beginning.
Take a series of iterables and return them as one long iterable.
itertools.chain(*iterables)
Example:
>>>colors= ['red','orange','yellow','green','blue']>>>shapes= ['circle','triangle','square','pentagon']>>>result=itertools.chain(colors,shapes)>>>foreachinresult:>>>print(each)redorangeyellowgreenbluecircletrianglesquarepentagon
Filters one iterable with another.
itertools.compress(data,selectors)
Example:
>>>shapes= ['circle','triangle','square','pentagon']>>>selections= [True,False,True,False]>>>result=itertools.compress(shapes,selections)>>>foreachinresult:>>>print(each)circlesquare
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every element.
itertools.dropwhile(predicate,iterable)
Example:
>>>data= [1,2,3,4,5,6,7,8,9,10,1]>>>result=itertools.dropwhile(lambdax:x<5,data)>>>foreachinresult:>>>print(each)56789101
Makes an iterator that filters elements from iterable returning only those for which the predicate is False.
itertools.filterfalse(predicate,iterable)
Example:
>>>data= [1,2,3,4,5,6,7,8,9,10,1]>>>result=itertools.filterfalse(lambdax:x<5,data)>>>foreachinresult:>>>print(each)5678910
Simply put, this function groups things together.
itertools.groupby(iterable,key=None)
Example:
>>>robots= [{'name':'blaster','faction':'autobot'}, {'name':'galvatron','faction':'decepticon'}, {'name':'jazz','faction':'autobot'}, {'name':'metroplex','faction':'autobot'}, {'name':'megatron','faction':'decepticon'}, {'name':'starcream','faction':'decepticon'}]>>>forkey,groupinitertools.groupby(robots,key=lambdax:x['faction']):>>>print(key)>>>print(list(group))autobot[{'name':'blaster','faction':'autobot'}]decepticon[{'name':'galvatron','faction':'decepticon'}]autobot[{'name':'jazz','faction':'autobot'}, {'name':'metroplex','faction':'autobot'}]decepticon[{'name':'megatron','faction':'decepticon'}, {'name':'starcream','faction':'decepticon'}]
This function is very much like slices. This allows you to cut out a piece of an iterable.
itertools.islice(iterable,start,stop[,step])
Example:
>>>colors= ['red','orange','yellow','green','blue',]>>>few_colors=itertools.islice(colors,2)>>>foreachinfew_colors:>>>print(each)redorange
itertools.permutations(iterable,r=None)
Example:
>>>alpha_data= ['a','b','c']>>>result=itertools.permutations(alpha_data)>>>foreachinresult:>>>print(each)('a','b','c')('a','c','b')('b','a','c')('b','c','a')('c','a','b')('c','b','a')
Creates the cartesian products from a series of iterables.
>>>num_data= [1,2,3]>>>alpha_data= ['a','b','c']>>>result=itertools.product(num_data,alpha_data)>>>foreachinresult:print(each)(1,'a')(1,'b')(1,'c')(2,'a')(2,'b')(2,'c')(3,'a')(3,'b')(3,'c')
This function will repeat an object over and over again. Unless, there is a times argument.
itertools.repeat(object[,times])
Example:
>>>foriinitertools.repeat("spam",3):print(i)spamspamspam
Makes an iterator that computes the function using arguments obtained from the iterable.
itertools.starmap(function,iterable)
Example:
>>>data= [(2,6), (8,4), (7,3)]>>>result=itertools.starmap(operator.mul,data)>>>foreachinresult:>>>print(each)123221
The opposite of dropwhile(). Makes an iterator and returns elements from the iterable as long as the predicate is true.
itertools.takewhile(predicate,iterable)
Example:
>>>data= [1,2,3,4,5,6,7,8,9,10,1]>>>result=itertools.takewhile(lambdax:x<5,data)>>>foreachinresult:>>>print(each)1234
Return n independent iterators from a single iterable.
itertools.tee(iterable,n=2)
Example:
>>>colors= ['red','orange','yellow','green','blue']>>>alpha_colors,beta_colors=itertools.tee(colors)>>>foreachinalpha_colors:>>>print(each)redorangeyellowgreenblue
>>>colors= ['red','orange','yellow','green','blue']>>>alpha_colors,beta_colors=itertools.tee(colors)>>>foreachinbeta_colors:>>>print(each)redorangeyellowgreenblue
Makes an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length, missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted.
itertools.zip_longest(*iterables,fillvalue=None)
Example:
>>>colors= ['red','orange','yellow','green','blue',]>>>data= [1,2,3,4,5,6,7,8,9,10,]>>>foreachinitertools.zip_longest(colors,data,fillvalue=None):>>>print(each)('red',1)('orange',2)('yellow',3)('green',4)('blue',5)(None,6)(None,7)(None,8)(None,9)(None,10)
>>>a= [1,3,5,7,9,11]>>> [i-1foriina][0,2,4,6,8,10]
>>>b= {"abc","def"}>>> {s.upper()forsinb}{"ABC","DEF"}
>>>c= {'name':'Pooka','age':5}>>> {v:kfork,vinc.items()}{'Pooka':'name',5:'age'}
A List comprehension can be generated from a dictionary:
>>>c= {'name':'Pooka','first_name':'Oooka'}>>> ["{}:{}".format(k.upper(),v.upper())fork,vinc.items()]['NAME:POOKA','FIRST_NAME:OOOKA']
| Escape character | Prints as |
|---|---|
\' | Single quote |
\" | Double quote |
\t | Tab |
\n | Newline (line break) |
\\ | Backslash |
Example:
>>>print("Hello there!\nHow are you?\nI\'m doing fine.")Hellothere!Howareyou?I'mdoingfine.
A raw string completely ignores all escape characters and prints any backslash that appears in the string.
>>>print(r'That is Carol\'s cat.')ThatisCarol\'scat.
Note: mostly used for regular expression definition (seere package)
>>>print('''Dear Alice,>>>>>> Eve's cat has been arrested for catnapping, cat burglary, and extortion.>>>>>> Sincerely,>>> Bob''')DearAlice,Eve'scathasbeenarrestedforcatnapping,catburglary,andextortion.Sincerely,Bob
To keep a nicer flow in your code, you can use thededent function from thetextwrap standard package.
>>>fromtextwrapimportdedent>>>>>>defmy_function():>>>print('''>>> Dear Alice,>>>>>> Eve's cat has been arrested for catnapping, cat burglary, and extortion.>>>>>> Sincerely,>>> Bob>>> ''').strip()
This generates the same string than before.
H e l l o w o r l d !0 1 2 3 4 5 6 7 8 9 10 11>>>spam='Hello world!'>>>spam[0]'H'
>>>spam[4]'o'
>>>spam[-1]'!'
Slicing:
>>>spam[0:5]'Hello'
>>>spam[:5]'Hello'
>>>spam[6:]'world!'
>>>spam[6:-1]'world'
>>>spam[:-1]'Hello world'
>>>spam[::-1]'!dlrow olleH'
>>>spam='Hello world!'>>>fizz=spam[0:5]>>>fizz'Hello'
>>>'Hello'in'Hello World'True
>>>'Hello'in'Hello'True
>>>'HELLO'in'Hello World'False
>>>''in'spam'True
>>>'cats'notin'cats and dogs'False
>>>a= [1,2,3,4]>>>5inaFalse
>>>2inaTrue
upper() andlower():
>>>spam='Hello world!'>>>spam=spam.upper()>>>spam'HELLO WORLD!'
>>>spam=spam.lower()>>>spam'hello world!'
isupper() and islower():
>>>spam='Hello world!'>>>spam.islower()False
>>>spam.isupper()False
>>>'HELLO'.isupper()True
>>>'abc12345'.islower()True
>>>'12345'.islower()False
>>>'12345'.isupper()False
- isalpha() returns True if the string consists only of letters and is not blank.
- isalnum() returns True if the string consists only of letters and numbers and is not blank.
- isdecimal() returns True if the string consists only of numeric characters and is not blank.
- isspace() returns True if the string consists only of spaces,tabs, and new-lines and is not blank.
- istitle() returns True if the string consists only of words that begin with an uppercase letter followed by only lowercase letters.
>>>'Hello world!'.startswith('Hello')True
>>>'Hello world!'.endswith('world!')True
>>>'abc123'.startswith('abcdef')False
>>>'abc123'.endswith('12')False
>>>'Hello world!'.startswith('Hello world!')True
>>>'Hello world!'.endswith('Hello world!')True
join():
>>>', '.join(['cats','rats','bats'])'cats, rats, bats'
>>>' '.join(['My','name','is','Simon'])'My name is Simon'
>>>'ABC'.join(['My','name','is','Simon'])'MyABCnameABCisABCSimon'
split():
>>>'My name is Simon'.split()['My','name','is','Simon']
>>>'MyABCnameABCisABCSimon'.split('ABC')['My','name','is','Simon']
>>>'My name is Simon'.split('m')['My na','e is Si','on']
rjust() and ljust():
>>>'Hello'.rjust(10)' Hello'
>>>'Hello'.rjust(20)' Hello'
>>>'Hello World'.rjust(20)' Hello World'
>>>'Hello'.ljust(10)'Hello '
An optional second argument to rjust() and ljust() will specify a fill character other than a space character. Enter the following into the interactive shell:
>>>'Hello'.rjust(20,'*')'***************Hello'
>>>'Hello'.ljust(20,'-')'Hello---------------'
center():
>>>'Hello'.center(20)' Hello '
>>>'Hello'.center(20,'=')'=======Hello========'
>>>spam=' Hello World '>>>spam.strip()'Hello World'
>>>spam.lstrip()'Hello World '
>>>spam.rstrip()' Hello World'
>>>spam='SpamSpamBaconSpamEggsSpamSpam'>>>spam.strip('ampS')'BaconSpamEggs'
>>>importpyperclip>>>pyperclip.copy('Hello world!')>>>pyperclip.paste()'Hello world!'
>>>name='Pete'>>>'Hello %s'%name"Hello Pete"
We can use the%x format specifier to convert an int value to a string:
>>>num=5>>>'I have %x apples'%num"I have 5 apples"
Note: For new code, usingstr.format orf-strings (Python 3.6+) is strongly recommended over the% operator.
Python 3 introduced a new way to do string formatting that was later back-ported to Python 2.7. This makes the syntax for string formatting more regular.
>>>name='John'>>>age=20'>>>"Hello I'm {}, my age is {}".format(name,age)"Hello I'm John, my age is 20"
>>>"Hello I'm {0}, my age is {1}".format(name,age)"Hello I'm John, my age is 20"
The officialPython 3.x documentation recommendstr.format over the% operator:
The formatting operations described here exhibit a variety of quirks that lead to a number of common errors (such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals or the str.format() interface helps avoid these errors. These alternatives also provide more powerful, flexible and extensible approaches to formatting text.
You would only use%s string formatting on functions that can do lazy parameters evaluation,the most common being logging:
Prefer:
>>>name="alice">>>logging.debug("User name: %s",name)
Over:
>>>logging.debug("User name: {}".format(name))
Or:
>>>logging.debug("User name: "+name)
>>>name='Elizabeth'>>>f'Hello{name}!''HelloElizabeth!
It is even possible to do inline arithmetic with it:
>>>a=5>>>b=10>>>f'Five plus ten is{a+b} and not{2* (a+b)}.''Five plus ten is 15 and not 30.'
A simpler and less powerful mechanism, but it is recommended when handling format strings generated by users. Due to their reduced complexity template strings are a safer choice.
>>>fromstringimportTemplate>>>name='Elizabeth'>>>t=Template('Hey $name!')>>>t.substitute(name=name)'Hey Elizabeth!'
- Import the regex module with
import re. - Create a Regex object with the
re.compile()function. (Remember to use a raw string.) - Pass the string you want to search into the Regex object’s
search()method. This returns aMatchobject. - Call the Match object’s
group()method to return a string of the actual matched text.
All the regex functions in Python are in the re module:
>>>importre
>>>phone_num_regex=re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')>>>mo=phone_num_regex.search('My number is 415-555-4242.')>>>print('Phone number found: {}'.format(mo.group()))Phonenumberfound:415-555-4242
>>>phone_num_regex=re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')>>>mo=phone_num_regex.search('My number is 415-555-4242.')>>>mo.group(1)'415'>>>mo.group(2)'555-4242'>>>mo.group(0)'415-555-4242'>>>mo.group()'415-555-4242'
To retrieve all the groups at once: use the groups() method—note the plural form for the name.
>>>mo.groups()('415','555-4242')>>>area_code,main_number=mo.groups()>>>print(area_code)415>>>print(main_number)555-4242
The | character is called a pipe. You can use it anywhere you want to match one of many expressions. For example, the regular expression r'Batman|Tina Fey' will match either 'Batman' or 'Tina Fey'.
>>>hero_regex=re.compile (r'Batman|Tina Fey')>>>mo1=hero_regex.search('Batman and Tina Fey.')>>>mo1.group()'Batman'>>>mo2=hero_regex.search('Tina Fey and Batman.')>>>mo2.group()'Tina Fey'
You can also use the pipe to match one of several patterns as part of your regex:
>>>bat_regex=re.compile(r'Bat(man|mobile|copter|bat)')>>>mo=bat_regex.search('Batmobile lost a wheel')>>>mo.group()'Batmobile'>>>mo.group(1)'mobile'
The ? character flags the group that precedes it as an optional part of the pattern.
>>>bat_regex=re.compile(r'Bat(wo)?man')>>>mo1=bat_regex.search('The Adventures of Batman')>>>mo1.group()'Batman'>>>mo2=bat_regex.search('The Adventures of Batwoman')>>>mo2.group()'Batwoman'
The * (called the star or asterisk) means “match zero or more”—the group that precedes the star can occur any number of times in the text.
>>>bat_regex=re.compile(r'Bat(wo)*man')>>>mo1=bat_regex.search('The Adventures of Batman')>>>mo1.group()'Batman'>>>mo2=bat_regex.search('The Adventures of Batwoman')>>>mo2.group()'Batwoman'>>>mo3=bat_regex.search('The Adventures of Batwowowowoman')>>>mo3.group()'Batwowowowoman'
While * means “match zero or more,” the + (or plus) means “match one or more”. The group preceding a plus must appear at least once. It is not optional:
>>>bat_regex=re.compile(r'Bat(wo)+man')>>>mo1=bat_regex.search('The Adventures of Batwoman')>>>mo1.group()'Batwoman'
>>>mo2=bat_regex.search('The Adventures of Batwowowowoman')>>>mo2.group()'Batwowowowoman'
>>>mo3=bat_regex.search('The Adventures of Batman')>>>mo3isNoneTrue
If you have a group that you want to repeat a specific number of times, follow the group in your regex with a number in curly brackets. For example, the regex (Ha){3} will match the string 'HaHaHa', but it will not match 'HaHa', since the latter has only two repeats of the (Ha) group.
Instead of one number, you can specify a range by writing a minimum, a comma, and a maximum in between the curly brackets. For example, the regex (Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.
>>>ha_regex=re.compile(r'(Ha){3}')>>>mo1=ha_regex.search('HaHaHa')>>>mo1.group()'HaHaHa'
>>>mo2=ha_regex.search('Ha')>>>mo2isNoneTrue
Python’s regular expressions are greedy by default, which means that in ambiguous situations they will match the longest string possible. The non-greedy version of the curly brackets, which matches the shortest string possible, has the closing curly bracket followed by a question mark.
>>>greedy_ha_regex=re.compile(r'(Ha){3,5}')>>>mo1=greedy_ha_regex.search('HaHaHaHaHa')>>>mo1.group()'HaHaHaHaHa'
>>>nongreedy_ha_regex=re.compile(r'(Ha){3,5}?')>>>mo2=nongreedy_ha_regex.search('HaHaHaHaHa')>>>mo2.group()'HaHaHa'
In addition to the search() method, Regex objects also have a findall() method. While search() will return a Match object of the first matched text in the searched string, the findall() method will return the strings of every match in the searched string.
>>>phone_num_regex=re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')# has no groups>>>phone_num_regex.findall('Cell: 415-555-9999 Work: 212-555-0000')['415-555-9999','212-555-0000']
To summarize what the findall() method returns, remember the following:
When called on a regex with no groups, such as \d-\d\d\d-\d\d\d\d, the method findall() returns a list of ng matches, such as ['415-555-9999', '212-555-0000'].
When called on a regex that has groups, such as (\d\d\d)-(d\d)-(\d\d\d\d), the method findall() returns a list of es of strings (one string for each group), such as [('415', '555', '9999'), ('212', '555', '0000')].
There are times when you want to match a set of characters but the shorthand character classes (\d, \w, \s, and so on) are too broad. You can define your own character class using square brackets. For example, the character class [aeiouAEIOU] will match any vowel, both lowercase and uppercase.
>>>vowel_regex=re.compile(r'[aeiouAEIOU]')>>>vowel_regex.findall('Robocop eats baby food. BABY FOOD.')['o','o','o','e','a','a','o','o','A','O','O']
You can also include ranges of letters or numbers by using a hyphen. For example, the character class [a-zA-Z0-9] will match all lowercase letters, uppercase letters, and numbers.
By placing a caret character (^) just after the character class’s opening bracket, you can make a negative character class. A negative character class will match all the characters that are not in the character class. For example, enter the following into the interactive shell:
>>>consonant_regex=re.compile(r'[^aeiouAEIOU]')>>>consonant_regex.findall('Robocop eats baby food. BABY FOOD.')['R','b','c','p',' ','t','s',' ','b','b','y',' ','f','d','.','','B','B','Y',' ','F','D','.']
You can also use the caret symbol (^) at the start of a regex to indicate that a match must occur at the beginning of the searched text.
Likewise, you can put a dollar sign ($) at the end of the regex to indicate the string must end with this regex pattern.
And you can use the ^ and $ together to indicate that the entire string must match the regex—that is, it’s not enough for a match to be made on some subset of the string.
The r'^Hello' regular expression string matches strings that begin with 'Hello':
>>>begins_with_hello=re.compile(r'^Hello')>>>begins_with_hello.search('Hello world!')<_sre.SRE_Matchobject;span=(0,5),match='Hello'>>>>begins_with_hello.search('He said hello.')isNoneTrue
The r'\d$' regular expression string matches strings that end with a numeric character from 0 to 9:
>>>whole_string_is_num=re.compile(r'^\d+$')>>>whole_string_is_num.search('1234567890')<_sre.SRE_Matchobject;span=(0,10),match='1234567890'>>>>whole_string_is_num.search('12345xyz67890')isNoneTrue>>>whole_string_is_num.search('12 34567890')isNoneTrue
The . (or dot) character in a regular expression is called a wildcard and will match any character except for a newline:
>>>at_regex=re.compile(r'.at')>>>at_regex.findall('The cat in the hat sat on the flat mat.')['cat','hat','sat','lat','mat']
>>>name_regex=re.compile(r'First Name: (.*) Last Name: (.*)')>>>mo=name_regex.search('First Name: Al Last Name: Sweigart')>>>mo.group(1)'Al'
>>>mo.group(2)'Sweigart'
The dot-star uses greedy mode: It will always try to match as much text as possible. To match any and all text in a nongreedy fashion, use the dot, star, and question mark (.*?). The question mark tells Python to match in a nongreedy way:
>>>nongreedy_regex=re.compile(r'<.*?>')>>>mo=nongreedy_regex.search('<To serve man> for dinner.>')>>>mo.group()'<To serve man>'
>>>greedy_regex=re.compile(r'<.*>')>>>mo=greedy_regex.search('<To serve man> for dinner.>')>>>mo.group()'<To serve man> for dinner.>'
The dot-star will match everything except a newline. By passing re.DOTALL as the second argument to re.compile(), you can make the dot character match all characters, including the newline character:
>>>no_newline_regex=re.compile('.*')>>>no_newline_regex.search('Serve the public trust.\nProtect the innocent.\nUphold the law.').group()'Serve the public trust.'
>>>newline_regex=re.compile('.*',re.DOTALL)>>>newline_regex.search('Serve the public trust.\nProtect the innocent.\nUphold the law.').group()'Serve the public trust.\nProtect the innocent.\nUphold the law.'
| Symbol | Matches |
|---|---|
? | zero or one of the preceding group. |
* | zero or more of the preceding group. |
+ | one or more of the preceding group. |
{n} | exactly n of the preceding group. |
{n,} | n or more of the preceding group. |
{,m} | 0 to m of the preceding group. |
{n,m} | at least n and at most m of the preceding p. |
{n,m}? or*? or+? | performs a nongreedy match of the preceding p. |
^spam | means the string must begin with spam. |
spam$ | means the string must end with spam. |
. | any character, except newline characters. |
\d,\w, and\s | a digit, word, or space character, respectively. |
\D,\W, and\S | anything except a digit, word, or space, respectively. |
[abc] | any character between the brackets (such as a, b, ). |
[^abc] | any character that isn’t between the brackets. |
To make your regex case-insensitive, you can pass re.IGNORECASE or re.I as a second argument to re.compile():
>>>robocop=re.compile(r'robocop',re.I)>>>robocop.search('Robocop is part man, part machine, all cop.').group()'Robocop'
>>>robocop.search('ROBOCOP protects the innocent.').group()'ROBOCOP'
>>>robocop.search('Al, why does your programming book talk about robocop so much?').group()'robocop'
The sub() method for Regex objects is passed two arguments:
- The first argument is a string to replace any matches.
- The second is the string for the regular expression.
The sub() method returns a string with the substitutions applied:
>>>names_regex=re.compile(r'Agent \w+')>>>names_regex.sub('CENSORED','Agent Alice gave the secret documents to Agent Bob.')'CENSORED gave the secret documents to CENSORED.'
Another example:
>>>agent_names_regex=re.compile(r'Agent (\w)\w*')>>>agent_names_regex.sub(r'\1****','Agent Alice told Agent Carol that Agent Eve knew Agent Bob was a double agent.')A****toldC****thatE****knewB****wasadoubleagent.'
To tell the re.compile() function to ignore whitespace and comments inside the regular expression string, “verbose mode” can be enabled by passing the variable re.VERBOSE as the second argument to re.compile().
Now instead of a hard-to-read regular expression like this:
phone_regex=re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}(\s*(ext|x|ext.)\s*\d{2,5})?)')
you can spread the regular expression over multiple lines with comments like this:
phone_regex=re.compile(r'''( (\d{3}|\(\d{3}\))? # area code (\s|-|\.)? # separator \d{3} # first 3 digits (\s|-|\.) # separator \d{4} # last 4 digits (\s*(ext|x|ext.)\s*\d{2,5})? # extension )''',re.VERBOSE)
There are two main modules in Python that deals with path manipulation.One is theos.path module and the other is thepathlib module.Thepathlib module was added in Python 3.4, offering an object-oriented wayto handle file system paths.
On Windows, paths are written using backslashes (\) as the separator betweenfolder names. On Unix based operating system such as macOS, Linux, and BSDs,the forward slash (/) is used as the path separator. Joining paths can bea headache if your code needs to work on different platforms.
Fortunately, Python provides easy ways to handle this. We will showcasehow to deal with this with bothos.path.join andpathlib.Path.joinpath
Usingos.path.join on Windows:
>>>importos>>>os.path.join('usr','bin','spam')'usr\\bin\\spam'
And usingpathlib on *nix:
>>>frompathlibimportPath>>>print(Path('usr').joinpath('bin').joinpath('spam'))usr/bin/spam
pathlib also provides a shortcut to joinpath using the/ operator:
>>>frompathlibimportPath>>>print(Path('usr')/'bin'/'spam')usr/bin/spam
Notice the path separator is different between Windows and Unix based operatingsystem, that's why you want to use one of the above methods instead ofadding strings together to join paths together.
Joining paths is helpful if you need to create different file paths underthe same directory.
Usingos.path.join on Windows:
>>>my_files= ['accounts.txt','details.csv','invite.docx']>>>forfilenameinmy_files:>>>print(os.path.join('C:\\Users\\asweigart',filename))C:\Users\asweigart\accounts.txtC:\Users\asweigart\details.csvC:\Users\asweigart\invite.docx
Usingpathlib on *nix:
>>>my_files= ['accounts.txt','details.csv','invite.docx']>>>home=Path.home()>>>forfilenameinmy_files:>>>print(home/filename)/home/asweigart/accounts.txt/home/asweigart/details.csv/home/asweigart/invite.docx
Usingos on Windows:
>>>importos>>>os.getcwd()'C:\\Python34'>>>os.chdir('C:\\Windows\\System32')>>>os.getcwd()'C:\\Windows\\System32'
Usingpathlib on *nix:
>>>frompathlibimportPath>>>fromosimportchdir>>>print(Path.cwd())/home/asweigart>>>chdir('/usr/lib/python3.6')>>>print(Path.cwd())/usr/lib/python3.6
Usingos on Windows:
>>>importos>>>os.makedirs('C:\\delicious\\walnut\\waffles')
Usingpathlib on *nix:
>>>frompathlibimportPath>>>cwd=Path.cwd()>>> (cwd/'delicious'/'walnut'/'waffles').mkdir()Traceback (mostrecentcalllast):File"<stdin>",line1,in<module>File"/usr/lib/python3.6/pathlib.py",line1226,inmkdirself._accessor.mkdir(self,mode)File"/usr/lib/python3.6/pathlib.py",line387,inwrappedreturnstrfunc(str(pathobj),*args)FileNotFoundError: [Errno2]Nosuchfileordirectory:'/home/asweigart/delicious/walnut/waffles'
Oh no, we got a nasty error! The reason is that the 'delicious' directory doesnot exist, so we cannot make the 'walnut' and the 'waffles' directories underit. To fix this, do:
>>>frompathlibimportPath>>>cwd=Path.cwd()>>> (cwd/'delicious'/'walnut'/'waffles').mkdir(parents=True)
And all is good :)
There are two ways to specify a file path.
- An absolute path, which always begins with the root folder
- A relative path, which is relative to the program’s current working directory
There are also the dot (.) and dot-dot (..) folders. These are not real folders but special names that can be used in a path. A single period (“dot”) for a folder name is shorthand for “this directory.” Two periods (“dot-dot”) means “the parent folder.”
To see if a path is an absolute path:
Usingos.path on *nix:
>>>importos>>>os.path.isabs('/')True>>>os.path.isabs('..')False
Usingpathlib on *nix:
>>>frompathlibimportPath>>>Path('/').is_absolute()True>>>Path('..').is_absolute()False
You can extract an absolute path with bothos.path andpathlib
Usingos.path on *nix:
>>>importos>>>os.getcwd()'/home/asweigart'>>>os.path.abspath('..')'/home'
Usingpathlib on *nix:
frompathlibimportPathprint(Path.cwd())/home/asweigartprint(Path('..').resolve())/home
You can get a relative path from a starting path to another path.
Usingos.path on *nix:
>>>importos>>>os.path.relpath('/etc/passwd','/')'etc/passwd'
Usingpathlib on *nix:
>>>frompathlibimportPath>>>print(Path('/etc/passwd').relative_to('/'))etc/passwd
Checking if a file/directory exists:
Usingos.path on *nix:
importos>>>os.path.exists('.')True>>>os.path.exists('setup.py')True>>>os.path.exists('/etc')True>>>os.path.exists('nonexistentfile')False
Usingpathlib on *nix:
frompathlibimportPath>>>Path('.').exists()True>>>Path('setup.py').exists()True>>>Path('/etc').exists()True>>>Path('nonexistentfile').exists()False
Checking if a path is a file:
Usingos.path on *nix:
>>>importos>>>os.path.isfile('setup.py')True>>>os.path.isfile('/home')False>>>os.path.isfile('nonexistentfile')False
Usingpathlib on *nix:
>>>frompathlibimportPath>>>Path('setup.py').is_file()True>>>Path('/home').is_file()False>>>Path('nonexistentfile').is_file()False
Checking if a path is a directory:
Usingos.path on *nix:
>>>importos>>>os.path.isdir('/')True>>>os.path.isdir('setup.py')False>>>os.path.isdir('/spam')False
Usingpathlib on *nix:
>>>frompathlibimportPath>>>Path('/').is_dir()True>>>Path('setup.py').is_dir()False>>>Path('/spam').is_dir()False
Getting a file's size in bytes:
Usingos.path on Windows:
>>>importos>>>os.path.getsize('C:\\Windows\\System32\\calc.exe')776192
Usingpathlib on *nix:
>>>frompathlibimportPath>>>stat=Path('/bin/python3.6').stat()>>>print(stat)# stat contains some other information about the file as wellos.stat_result(st_mode=33261,st_ino=141087,st_dev=2051,st_nlink=2,st_uid=0,--snip--st_gid=0,st_size=10024,st_atime=1517725562,st_mtime=1515119809,st_ctime=1517261276)>>>print(stat.st_size)# size in bytes10024
Listing directory contents usingos.listdir on Windows:
>>>importos>>>os.listdir('C:\\Windows\\System32')['0409','12520437.cpx','12520850.cpx','5U877.ax','aaclient.dll',--snip--'xwtpdui.dll','xwtpw32.dll','zh-CN','zh-HK','zh-TW','zipfldr.dll']
Listing directory contents usingpathlib on *nix:
>>>frompathlibimportPath>>>forfinPath('/usr/bin').iterdir():>>>print(f).../usr/bin/tiff2rgba/usr/bin/iconv/usr/bin/ldd/usr/bin/cache_restore/usr/bin/udiskie/usr/bin/unix2dos/usr/bin/t1reencode/usr/bin/epstopdf/usr/bin/idle3...
To find the total size of all the files in this directory:
WARNING: Directories themselves also have a size! So you might want tocheck for whether a path is a file or directory using the methods in the methods discussed in the above section!
Usingos.path.getsize() andos.listdir() together on Windows:
>>>importos>>>total_size=0>>>forfilenameinos.listdir('C:\\Windows\\System32'):total_size=total_size+os.path.getsize(os.path.join('C:\\Windows\\System32',filename))>>>print(total_size)1117846456
Usingpathlib on *nix:
>>>frompathlibimportPath>>>total_size=0>>>forsub_pathinPath('/usr/bin').iterdir():...total_size+=sub_path.stat().st_size>>>>>>print(total_size)1903178911
The shutil module provides functions for copying files, as well as entire folders.
>>>importshutil,os>>>os.chdir('C:\\')>>>shutil.copy('C:\\spam.txt','C:\\delicious')'C:\\delicious\\spam.txt'>>>shutil.copy('eggs.txt','C:\\delicious\\eggs2.txt')'C:\\delicious\\eggs2.txt'
While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and every folder and file contained in it:
>>>importshutil,os>>>os.chdir('C:\\')>>>shutil.copytree('C:\\bacon','C:\\bacon_backup')'C:\\bacon_backup'
>>>importshutil>>>shutil.move('C:\\bacon.txt','C:\\eggs')'C:\\eggs\\bacon.txt'
The destination path can also specify a filename. In the following example, the source file is moved and renamed:
>>>shutil.move('C:\\bacon.txt','C:\\eggs\\new_bacon.txt')'C:\\eggs\\new_bacon.txt'
If there is no eggs folder, then move() will rename bacon.txt to a file named eggs.
>>>shutil.move('C:\\bacon.txt','C:\\eggs')'C:\\eggs'
Calling os.unlink(path) or Path.unlink() will delete the file at path.
Calling os.rmdir(path) or Path.rmdir() will delete the folder at path. This folder must be empty of any files or folders.
Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it contains will also be deleted.
You can install this module by running pip install send2trash from a Terminal window.
>>>importsend2trash>>>withopen('bacon.txt','a')asbacon_file:# creates the file...bacon_file.write('Bacon is not a vegetable.')25>>>send2trash.send2trash('bacon.txt')
>>>importos>>>>>>forfolder_name,subfolders,filenamesinos.walk('C:\\delicious'):>>>print('The current folder is {}'.format(folder_name))>>>>>>forsubfolderinsubfolders:>>>print('SUBFOLDER OF {}: {}'.format(folder_name,subfolder))>>>forfilenameinfilenames:>>>print('FILE INSIDE {}: {}'.format(folder_name,filename))>>>>>>print('')ThecurrentfolderisC:\deliciousSUBFOLDEROFC:\delicious:catsSUBFOLDEROFC:\delicious:walnutFILEINSIDEC:\delicious:spam.txtThecurrentfolderisC:\delicious\catsFILEINSIDEC:\delicious\cats:catnames.txtFILEINSIDEC:\delicious\cats:zophie.jpgThecurrentfolderisC:\delicious\walnutSUBFOLDEROFC:\delicious\walnut:wafflesThecurrentfolderisC:\delicious\walnut\wafflesFILEINSIDEC:\delicious\walnut\waffles:butter.txt
pathlib provides a lot more functionality than the ones listed above,like getting file name, getting file extension, reading/writing a file withoutmanually opening it, etc. Check out theofficial documentationif you want to know more!
To read/write to a file in Python, you will want to use thewithstatement, which will close the file for you after you are done.
>>>withopen('C:\\Users\\your_home_folder\\hello.txt')ashello_file:...hello_content=hello_file.read()>>>hello_content'Hello World!'>>># Alternatively, you can use the *readlines()* method to get a list of string values from the file, one string for each line of text:>>>withopen('sonnet29.txt')assonnet_file:...sonnet_file.readlines()[When,indisgracewithfortuneandmen's eyes,\n', 'Iallalonebeweepmyoutcaststate,\n', And trouble deaf heaven with my bootless cries,\n',Andlookuponmyselfandcursemyfate,']>>># You can also iterate through the file line by line:>>>withopen('sonnet29.txt')assonnet_file:...forlineinsonnet_file:# note the new line character will be included in the line...print(line,end='')When,indisgracewithfortuneandmen'seyes,Iallalonebeweepmyoutcaststate,Andtroubledeafheavenwithmybootlesscries,Andlookuponmyselfandcursemyfate,
>>>withopen('bacon.txt','w')asbacon_file:...bacon_file.write('Hello world!\n')13>>>withopen('bacon.txt','a')asbacon_file:...bacon_file.write('Bacon is not a vegetable.')25>>>withopen('bacon.txt')asbacon_file:...content=bacon_file.read()>>>print(content)Helloworld!Baconisnotavegetable.
To save variables:
>>>importshelve>>>cats= ['Zophie','Pooka','Simon']>>>withshelve.open('mydata')asshelf_file:...shelf_file['cats']=cats
To open and read variables:
>>>withshelve.open('mydata')asshelf_file:...print(type(shelf_file))...print(shelf_file['cats'])<class'shelve.DbfilenameShelf'>['Zophie','Pooka','Simon']
Just like dictionaries, shelf values have keys() and values() methods that will return list-like values of the keys and values in the shelf. Since these methods return list-like values instead of true lists, you should pass them to the list() function to get them in list form.
>>>withshelve.open('mydata')asshelf_file:...print(list(shelf_file.keys()))...print(list(shelf_file.values()))['cats'][['Zophie','Pooka','Simon']]
>>>importpprint>>>cats= [{'name':'Zophie','desc':'chubby'}, {'name':'Pooka','desc':'fluffy'}]>>>pprint.pformat(cats)"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]">>>withopen('myCats.py','w')asfile_obj:...file_obj.write('cats = {}\n'.format(pprint.pformat(cats)))83
>>>importzipfile,os>>>os.chdir('C:\\')# move to the folder with example.zip>>>withzipfile.ZipFile('example.zip')asexample_zip:...print(example_zip.namelist())...spam_info=example_zip.getinfo('spam.txt')...print(spam_info.file_size)...print(spam_info.compress_size)...print('Compressed file is %sx smaller!'% (round(spam_info.file_size/spam_info.compress_size,2)))['spam.txt','cats/','cats/catnames.txt','cats/zophie.jpg']139083828'Compressed file is 3.63x smaller!'
The extractall() method for ZipFile objects extracts all the files and folders from a ZIP file into the current working directory.
>>>importzipfile,os>>>os.chdir('C:\\')# move to the folder with example.zip>>>withzipfile.ZipFile('example.zip')asexample_zip:...example_zip.extractall()
The extract() method for ZipFile objects will extract a single file from the ZIP file. Continue the interactive shell example:
>>>withzipfile.ZipFile('example.zip')asexample_zip:...print(example_zip.extract('spam.txt'))...print(example_zip.extract('spam.txt','C:\\some\\new\\folders'))'C:\\spam.txt''C:\\some\\new\\folders\\spam.txt'
>>>importzipfile>>>withzipfile.ZipFile('new.zip','w')asnew_zip:...new_zip.write('spam.txt',compress_type=zipfile.ZIP_DEFLATED)
This code will create a new ZIP file named new.zip that has the compressed contents of spam.txt.
Open a JSON file with:
importjsonwithopen("filename.json","r")asf:content=json.loads(f.read())
Write a JSON file with:
importjsoncontent= {"name":"Joe","age":20}withopen("filename.json","w")asf:f.write(json.dumps(content,indent=2))
Compared to JSON, YAML allows for much better human maintainability and gives you the option to add comments.It is a convenient choice for configuration files where humans will have to edit it.
There are two main libraries allowing to access to YAML files:
Install them usingpip install in your virtual environment.
The first one it easier to use but the second one, Ruamel, implements much better the YAMLspecification, and allow for example to modify a YAML content without altering comments.
Open a YAML file with:
fromruamel.yamlimportYAMLwithopen("filename.yaml")asf:yaml=YAML()yaml.load(f)
Anyconfig is a very handy package allowing to abstract completely the underlying configuration file format. It allows to load a Python dictionary from JSON, YAML, TOML, and so on.
Install it with:
pip install anyconfig
Usage:
importanyconfigconf1=anyconfig.load("/path/to/foo/conf.d/a.yml")
Exceptions are raised with a raise statement. In code, a raise statement consists of the following:
- The raise keyword
- A call to the Exception() function
- A string with a helpful error message passed to the Exception() function
>>>raiseException('This is the error message.')Traceback (mostrecentcalllast):File"<pyshell#191>",line1,in<module>raiseException('This is the error message.')Exception:Thisistheerrormessage.
Often it’s the code that calls the function, not the function itself, that knows how to handle an exception. So you will commonly see a raise statement inside a function and the try and except statements in the code calling the function.
defbox_print(symbol,width,height):iflen(symbol)!=1:raiseException('Symbol must be a single character string.')ifwidth<=2:raiseException('Width must be greater than 2.')ifheight<=2:raiseException('Height must be greater than 2.')print(symbol*width)foriinrange(height-2):print(symbol+ (' '* (width-2))+symbol)print(symbol*width)forsym,w,hin (('*',4,4), ('O',20,5), ('x',1,3), ('ZZ',3,3)):try:box_print(sym,w,h)exceptExceptionaserr:print('An exception happened: '+str(err))
The traceback is displayed by Python whenever a raised exception goes unhandled. But can also obtain it as a string by calling traceback.format_exc(). This function is useful if you want the information from an exception’s traceback but also want an except statement to gracefully handle the exception. You will need to import Python’s traceback module before calling this function.
>>>importtraceback>>>try:>>>raiseException('This is the error message.')>>>except:>>>withopen('errorInfo.txt','w')aserror_file:>>>error_file.write(traceback.format_exc())>>>print('The traceback info was written to errorInfo.txt.')116ThetracebackinfowaswrittentoerrorInfo.txt.
The 116 is the return value from the write() method, since 116 characters were written to the file. The traceback text was written to errorInfo.txt.
Traceback (most recent call last): File "<pyshell#28>", line 2, in <module>Exception: This is the error message.An assertion is a sanity check to make sure your code isn’t doing something obviously wrong. These sanity checks are performed by assert statements. If the sanity check fails, then an AssertionError exception is raised. In code, an assert statement consists of the following:
- The assert keyword
- A condition (that is, an expression that evaluates to True or False)
- A comma
- A string to display when the condition is False
>>>pod_bay_door_status='open'>>>assertpod_bay_door_status=='open','The pod bay doors need to be "open".'>>>pod_bay_door_status='I\'m sorry, Dave. I\'m afraid I can\'t do that.'>>>assertpod_bay_door_status=='open','The pod bay doors need to be "open".'Traceback (mostrecentcalllast):File"<pyshell#10>",line1,in<module>assertpod_bay_door_status=='open','The pod bay doors need to be "open".'AssertionError:Thepodbaydoorsneedtobe"open".
In plain English, an assert statement says, “I assert that this condition holds true, and if not, there is a bug somewhere in the program.” Unlike exceptions, your code should not handle assert statements with try and except; if an assert fails, your program should crash. By failing fast like this, you shorten the time between the original cause of the bug and when you first notice the bug. This will reduce the amount of code you will have to check before finding the code that’s causing the bug.
Disabling Assertions
Assertions can be disabled by passing the -O option when running Python.
To enable the logging module to display log messages on your screen as your program runs, copy the following to the top of your program (but under the #! python shebang line):
importlogginglogging.basicConfig(level=logging.DEBUG,format=' %(asctime)s - %(levelname)s- %(message)s')
Say you wrote a function to calculate the factorial of a number. In mathematics, factorial 4 is 1 × 2 × 3 × 4, or 24. Factorial 7 is 1 × 2 × 3 × 4 × 5 × 6 × 7, or 5,040. Open a new file editor window and enter the following code. It has a bug in it, but you will also enter several log messages to help yourself figure out what is going wrong. Save the program as factorialLog.py.
>>>importlogging>>>>>>logging.basicConfig(level=logging.DEBUG,format=' %(asctime)s - %(levelname)s- %(message)s')>>>>>>logging.debug('Start of program')>>>>>>deffactorial(n):>>>>>>logging.debug('Start of factorial(%s)'% (n))>>>total=1>>>>>>foriinrange(1,n+1):>>>total*=i>>>logging.debug('i is '+str(i)+', total is '+str(total))>>>>>>logging.debug('End of factorial(%s)'% (n))>>>>>>returntotal>>>>>>print(factorial(5))>>>logging.debug('End of program')2015-05-2316:20:12,664-DEBUG-Startofprogram2015-05-2316:20:12,664-DEBUG-Startoffactorial(5)2015-05-2316:20:12,665-DEBUG-iis0,totalis02015-05-2316:20:12,668-DEBUG-iis1,totalis02015-05-2316:20:12,670-DEBUG-iis2,totalis02015-05-2316:20:12,673-DEBUG-iis3,totalis02015-05-2316:20:12,675-DEBUG-iis4,totalis02015-05-2316:20:12,678-DEBUG-iis5,totalis02015-05-2316:20:12,680-DEBUG-Endoffactorial(5)02015-05-2316:20:12,684-DEBUG-Endofprogram
Logging levels provide a way to categorize your log messages by importance. There are five logging levels, described in Table 10-1 from least to most important. Messages can be logged at each level using a different logging function.
| Level | Logging Function | Description |
|---|---|---|
DEBUG | logging.debug() | The lowest level. Used for small details. Usually you care about these messages only when diagnosing problems. |
INFO | logging.info() | Used to record information on general events in your program or confirm that things are working at their point in the program. |
WARNING | logging.warning() | Used to indicate a potential problem that doesn’t prevent the program from working but might do so in the future. |
ERROR | logging.error() | Used to record an error that caused the program to fail to do something. |
CRITICAL | logging.critical() | The highest level. Used to indicate a fatal error that has caused or is about to cause the program to stop running entirely. |
After you’ve debugged your program, you probably don’t want all these log messages cluttering the screen. The logging.disable() function disables these so that you don’t have to go into your program and remove all the logging calls by hand.
>>>importlogging>>>logging.basicConfig(level=logging.INFO,format=' %(asctime)s -%(levelname)s - %(message)s')>>>logging.critical('Critical error! Critical error!')2015-05-2211:10:48,054-CRITICAL-Criticalerror!Criticalerror!>>>logging.disable(logging.CRITICAL)>>>logging.critical('Critical error! Critical error!')>>>logging.error('Error! Error!')
Instead of displaying the log messages to the screen, you can write them to a text file. The logging.basicConfig() function takes a filename keyword argument, like so:
importlogginglogging.basicConfig(filename='myProgramLog.txt',level=logging.DEBUG,format='%(asctime)s - %(levelname)s - %(message)s')
This function:
>>>defadd(x,y):returnx+y>>>add(5,3)8
Is equivalent to thelambda function:
>>>add=lambdax,y:x+y>>>add(5,3)8
It's not even need to bind it to a name like add before:
>>> (lambdax,y:x+y)(5,3)8
Like regular nested functions, lambdas also work as lexical closures:
>>>defmake_adder(n):returnlambdax:x+n>>>plus_3=make_adder(3)>>>plus_5=make_adder(5)>>>plus_3(4)7>>>plus_5(4)9
Note: lambda can only evaluate an expression, like a single line of code.
Many programming languages have a ternary operator, which define a conditional expression. The most common usage is to make a terse simple conditional assignment statement. In other words, it offers one-line code to evaluate the first expression if the condition is true, otherwise it evaluates the second expression.
<expression1> if <condition> else <expression2>Example:
>>>age=15>>>print('kid'ifage<18else'adult')kid
Ternary operators can be chained:
>>>age=15>>>print('kid'ifage<13else'teenager'ifage<18else'adult')teenager
The code above is equivalent to:
ifage<18:ifage<13:print('kid')else:print('teenager')else:print('adult')
The namesargs and kwargs are arbitrary - the important thing are the* and** operators. They can mean:
In a function declaration,
*means “pack all remaining positional arguments into a tuple named<name>”, while**is the same for keyword arguments (except it uses a dictionary, not a tuple).In a function call,
*means “unpack tuple or list named<name>to positional arguments at this position”, while**is the same for keyword arguments.
For example you can make a function that you can use to call any other function, no matter what parameters it has:
defforward(f,*args,**kwargs):returnf(*args,**kwargs)
Inside forward, args is a tuple (of all positional arguments except the first one, because we specified it - the f), kwargs is a dict. Then we call f and unpack them so they become normal arguments to f.
You use*args when you have an indefinite amount of positional arguments.
>>>deffruits(*args):>>>forfruitinargs:>>>print(fruit)>>>fruits("apples","bananas","grapes")"apples""bananas""grapes"
Similarly, you use**kwargs when you have an indefinite number of keyword arguments.
>>>deffruit(**kwargs):>>>forkey,valueinkwargs.items():>>>print("{0}: {1}".format(key,value))>>>fruit(name="apple",color="red")name:applecolor:red
>>>defshow(arg1,arg2,*args,kwarg1=None,kwarg2=None,**kwargs):>>>print(arg1)>>>print(arg2)>>>print(args)>>>print(kwarg1)>>>print(kwarg2)>>>print(kwargs)>>>data1= [1,2,3]>>>data2= [4,5,6]>>>data3= {'a':7,'b':8,'c':9}>>>show(*data1,*data2,kwarg1="python",kwarg2="cheatsheet",**data3)12(3,4,5,6)pythoncheatsheet{'a':7,'b':8,'c':9}>>>show(*data1,*data2,**data3)12(3,4,5,6)NoneNone{'a':7,'b':8,'c':9}# If you do not specify ** for kwargs>>>show(*data1,*data2,*data3)12(3,4,5,6,"a","b","c")NoneNone{}
- Functions can accept a variable number of positional arguments by using
*argsin the def statement. - You can use the items from a sequence as the positional arguments for a function with the
*operator. - Using the
*operator with a generator may cause your program to run out of memory and crash. - Adding new positional parameters to functions that accept
*argscan introduce hard-to-find bugs.
- Function arguments can be specified by position or by keyword.
- Keywords make it clear what the purpose of each argument is when it would be confusing with only positional arguments.
- Keyword arguments with default values make it easy to add new behaviors to a function, especially when the function has existing callers.
- Optional keyword arguments should always be passed by keyword instead of by position.
While Python's context managers are widely used, few understand the purpose behind their use. These statements, commonly used with reading and writing files, assist the application in conserving system memory and improve resource management by ensuring specific resources are only in use for certain processes.
A context manager is an object that is notified when a context (a block of code) starts and ends. You commonly use one with the with statement. It takes care of the notifying.
For example, file objects are context managers. When a context ends, the file object is closed automatically:
>>>withopen(filename)asf:>>>file_contents=f.read()# the open_file object has automatically been closed.
Anything that ends execution of the block causes the context manager's exit method to be called. This includes exceptions, and can be useful when an error causes you to prematurely exit from an open file or connection. Exiting a script without properly closing files/connections is a bad idea, that may cause data loss or other problems. By using a context manager you can ensure that precautions are always taken to prevent damage or loss in this way.
It is also possible to write a context manager using generator syntax thanks to thecontextlib.contextmanager decorator:
>>>importcontextlib>>>@contextlib.contextmanager...defcontext_manager(num):...print('Enter')...yieldnum+1...print('Exit')>>>withcontext_manager(2)ascm:...# the following instructions are run when the 'yield' point of the context...# manager is reached....# 'cm' will have the value that was yielded...print('Right in the middle with cm = {}'.format(cm))EnterRightinthemiddlewithcm=3Exit>>>
__main__ is the name of the scope in which top-level code executes.A module’sname is set equal to__main__ when read from standard input, a script, or from an interactive prompt.
A module can discover whether or not it is running in the main scope by checking its own__name__, which allows a common idiom for conditionally executing code in a module when it is run as a script or withpython -m but not when it is imported:
>>>if__name__=="__main__":...# execute only if run as a script...main()
For a package, the same effect can be achieved by including amain.py module, the contents of which will be executed when the module is run with -m
For example we are developing script which is designed to be used as module, we should do:
>>># Python program to execute function directly>>>defadd(a,b):...returna+b...>>>add(10,20)# we can test it by calling the function save it as calculate.py30>>># Now if we want to use that module by importing we have to comment out our call,>>># Instead we can write like this in calculate.py>>>if__name__=="__main__":...add(3,5)...>>>importcalculate>>>calculate.add(3,5)8
- Every Python module has it’s
__name__defined and if this is__main__, it implies that the module is being run standalone by the user and we can do corresponding appropriate actions. - If you import this script as a module in another script, thename is set to the name of the script/module.
- Python files can act as either reusable modules, or as standalone programs.
- if
__name__ == “main”:is used to execute some code only if the file was run directly, and not imported.
The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils. The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various commands that operate on your modules do the right thing.
Thesetup.py file is at the heart of a Python project. It describes all of the metadata about your project. There a quite a few fields you can add to a project to give it a rich set of metadata describing the project. However, there are only three required fields: name, version, and packages. The name field must be unique if you wish to publish your package on the Python Package Index (PyPI). The version field keeps track of different releases of the project. The packages field describes where you’ve put the Python source code within your project.
This allows you to easily install Python packages. Often it's enough to write:
python setup.py install
and module will install itself.
Our initial setup.py will also include information about the license and will re-use the README.txt file for the long_description field. This will look like:
>>>fromdistutils.coreimportsetup>>>setup(...name='pythonCheatsheet',...version='0.1',...packages=['pipenv',],...license='MIT',...long_description=open('README.txt').read(),... )
Find more information visithttp://docs.python.org/install/index.html.
Dataclasses are python classes but are suited for storing data objects.This module provides a decorator and functions for automatically adding generated special methods such as__init__() and__repr__() to user-defined classes.
They store data and represent a certain data type. Ex: A number. For people familiar with ORMs, a model instance is a data object. It represents a specific kind of entity. It holds attributes that define or represent the entity.
They can be compared to other objects of the same type. Ex: A number can be greater than, less than, or equal to another number.
Python 3.7 provides a decorator dataclass that is used to convert a class into a dataclass.
python 2.7
>>>classNumber:...def__init__(self,val):...self.val=val...>>>obj=Number(2)>>>obj.val2
with dataclass
>>>@dataclass...classNumber:...val:int...>>>obj=Number(2)>>>obj.val2
It is easy to add default values to the fields of your data class.
>>>@dataclass...classProduct:...name:str...count:int=0...price:float=0.0...>>>obj=Product("Python")>>>obj.namePython>>>obj.count0>>>obj.price0.0
It is mandatory to define the data type in dataclass. However, If you don't want specify the datatype then, usetyping.Any.
>>>fromdataclassesimportdataclass>>>fromtypingimportAny>>>@dataclass...classWithoutExplicitTypes:...name:Any...value:Any=42...
The use of a Virtual Environment is to test python code in encapsulated environments and to also avoid filling the base Python installation with libraries we might use for only one project.
Install virtualenv
pip install virtualenvInstall virtualenvwrapper-win (Windows)
pip install virtualenvwrapper-win
Usage:
Make a Virtual Environment
mkvirtualenv HelloWoldAnything we install now will be specific to this project. And available to the projects we connect to this environment.
Set Project Directory
To bind our virtualenv with our current working directory we simply enter:
setprojectdir .Deactivate
To move onto something else in the command line type ‘deactivate’ to deactivate your environment.
deactivateNotice how the parenthesis disappear.
Workon
Open up the command prompt and type ‘workon HelloWold’ to activate the environment and move into your root project folder
workon HelloWold
Poetry is a tool for dependency management and packaging in Python. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you.
Install Poetry
pip install --user poetryCreate a new project
poetry new my-projectThis will create a my-project directory:
my-project├── pyproject.toml├── README.rst├── poetry_demo│ └── __init__.py└── tests ├── __init__.py └── test_poetry_demo.pyThe pyproject.toml file will orchestrate your project and its dependencies:
[tool.poetry]name = "my-project"version = "0.1.0"description = ""authors = ["your name <your@mail.com>"][tool.poetry.dependencies]python = "*"[tool.poetry.dev-dependencies]pytest = "^3.4"Packages
To add dependencies to your project, you can specify them in the tool.poetry.dependencies section:
[tool.poetry.dependencies]pendulum = "^1.4"Also, instead of modifying the pyproject.toml file by hand, you can use the add command and it will automatically find a suitable version constraint.
$ poetry add pendulumTo install the dependencies listed in the pyproject.toml:
poetry installTo remove dependencies:
poetry remove pendulum
For more information, check thedocumentation.
Pipenv is a tool that aims to bring the best of all packaging worlds (bundler, composer, npm, cargo, yarn, etc.) to the Python world. Windows is a first-class citizen, in our world.
Install pipenv
pip install pipenvEnter your Project directory and install the Packages for your project
cd my_projectpipenv install <package>Pipenv will install your package and create a Pipfile for you in your project’s directory. The Pipfile is used to track which dependencies your project needs in case you need to re-install them.
Uninstall Packages
pipenv uninstall <package>Activate the Virtual Environment associated with your Python project
pipenv shellExit the Virtual Environment
exit
Find more information and a video indocs.pipenv.org.
Anaconda is another popular tool to manage python packages.
Where packages, notebooks, projects and environments are shared.Your place for free public conda package hosting.
Usage:
Make a Virtual Environment
conda create -n HelloWorldTo use the Virtual Environment, activate it by:
conda activate HelloWorldAnything installed now will be specific to the project HelloWorld
Exit the Virtual Environment
conda deactivate
About
Basic Cheat Sheet for Python (PDF, Markdown and Jupyter Notebook)
Resources
License
Code of conduct
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Languages
- Jupyter Notebook100.0%