- Notifications
You must be signed in to change notification settings - Fork43
jensen888/Meta-Learning-Papers
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
A summary of meta learning papers based on realm. Sorted by submission date on arXiv.
- Survey
- Few-shot learning
- Reinforcement Learning
- AutoML
- Task-dependent Methods
- Data Aug & Reg
- Lifelong learning
- Domain generalization
- Neural process
- Configuration transfer (Adaptation, Hyperparameter Opt)
- Model compression
- Kernel learning
- Robustness
- Bayesian inference
- Optimization
- Theory
Meta-Learning in Neural Networks: A Survey [paper]
- Timothy Hospedales, Antreas Antoniou, Paul Micaelli, Amos Storkey
Meta-Learning[paper]
- Joaquin Vanschoren
Meta-Learning: A Survey [paper]
- Joaquin Vanschoren
Meta-learners’ learning dynamics are unlike learners’ [paper]
- Neil C. Rabinowitz
Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification [paper]
- Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, Peihua Li --CVPR 2022
Learning Prototype-oriented Set Representations for Meta-Learning [paper]
- Dan dan Guo, Long Tian, Minghe Zhang, Mingyuan Zhou, Hongyuan Zha --ICLR 2022
On the Role of Pre-training for Meta Few-Shot Learning [paper]
- Chia-You Chen, Hsuan-Tien Lin, Gang Niu, Masashi Sugiyama, --arXiv 2021
BOIL: Towards Representation Change for Few-shot Learning [paper]
- Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, Se-Young Yun --ICLR 2021
On Episodes, Prototypical Networks, and Few-Shot Learning [paper]
- Steinar Laenen, Luca Bertinetto --NeurIPS 2021
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels [paper]
- Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O'Boyle, Amos Storkey --NeurIPS 2020
Laplacian Regularized Few-Shot Learning [paper]
- Imtiaz Masud Ziko, Jose Dolz, Eric Granger, Ismail Ben Ayed --ICML 2020
Few-shot Sequence Learning with Transformer
- Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak Lee, Marc´Aurelio Ranzato, Arthur Szlam --NeurIPS 2020 #Meta-Learning
Prototype Rectification for Few-Shot Learning [paper]
- Jinlu Liu, Liang Song, Yongqiang Qin --ECCV 2020
When Does Self-supervision Improve Few-shot Learning? [paper]
- Jong-Chyi Su, Subhransu Maji, Bharath Hariharan --ECCV 2020
Cross Attention Network for Few-shot Classification [paper]
- Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, Xilin Chen --NeurIPS 2019
Learning to Learn via Self-Critique [paper]
- Antreas Antoniou, Amos Storkey --NeurIPS 2019
Learning from the Past: Continual Meta-Learning with Bayesian Graph Neural Networks [paper]
- Yadan Luo, Zi Huang, Zheng Zhang, Ziwei Wang, Mahsa Baktashmotlagh, Yang Yang --AAAI 2020
Few-Shot Learning with Global Class Representations [paper]
- Tiange Luo, Aoxue Li, Tao Xiang, Weiran Huang, Liwei Wang --ICCV 2019
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning [paper]
- Sung Whan Yoon, Jun Seo, Jaekyun Moon --ICML 2019
Learning to Learn with Conditional Class Dependencies [paper]
- Xiang Jiang, Mohammad Havaei, Farshid Varno, Gabriel Chartrand, Nicolas Chapados, Stan Matwin --ICLR 2019
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal [paper]
- Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, Xiaogang Wang --CVPR 2019
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning [paper]
- Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, Joseph E. Gonzalez --CVPR 2019
Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images [paper]
- Junsik Kim, Tae-Hyun Oh, Seokju Lee, Fei Pan, In So Kweon --CVPR 2019
LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning [paper]
- Yaoyao Liu, Qianru Sun, An-An Liu, Yuting Su, Bernt Schiele, Tat-Seng Chua --CVPR 2019
Meta-Learning with Differentiable Convex Optimization [paper]
- Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, Stefano Soatto --CVPR 2019
Dense Classification and Implanting for Few-Shot Learning [paper]
- Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, Andrei Bursuc --CVPR 2019
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
- Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle -- arXiv 2019
Adaptive Cross-Modal Few-Shot Learning [paper]
- Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, Pedro O. Pinheiro --arXiv 2019
Meta-Learning with Latent Embedding Optimization [paper]
- Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell -- ICLR 2019
A Closer Look at Few-shot Classification [paper]
- Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, Jia-Bin Huang -- ICLR 2019
Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning [paper]
- Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, Yi Yang -- ICLR 2019
Dynamic Few-Shot Visual Learning without Forgetting [paper]
- Spyros Gidaris, Nikos Komodakis --arXiv 2019
Meta Learning with Lantent Embedding Optimization [paper]
- Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero & Raia Hadsell --ICLR 2019
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
- Tiago Ramalho, Marta Garnelo --ICLR 2019
How To Train Your MAML [paper]
- Antreas Antoniou, Harrison Edwards, Amos Storkey -- ICLR 2019
TADAM: Task dependent adaptive metric for improved few-shot learning [paper]
- Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste --arXiv 2019
Few-shot Learning with Meta Metric Learners
- Yu Cheng, Mo Yu, Xiaoxiao Guo, Bowen Zhou --NIPS 2017 workshop on Meta-Learning
Learning Embedding Adaptation for Few-Shot Learning [paper]
- Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, Fei Sha --arXiv 2018
Meta-Transfer Learning for Few-Shot Learning [paper]
- Qianru Sun, Yaoyao Liu, Tat-Seng Chu, Bernt Schiele -- arXiv 2018
Task-Agnostic Meta-Learning for Few-shot Learning
- Muhammad Abdullah Jamal, Guo-Jun Qi, and Mubarak Shah --arXiv 2018
Few-Shot Learning with Graph Neural Networks [paper]
- Victor Garcia, Joan Bruna -- ICLR 2018
Prototypical Networks for Few-shot Learning [paper]
- Jake Snell, Kevin Swersky, Richard S. Zemel -- NIPS 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [paper]
- Chelsea Finn, Pieter Abbeel, Sergey Levine -- ICML 2016
Image Deformation Meta-Networks for One-Shot Learning [paper]
- Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu, Martial Hebert --CVPR 2019
Balanced Meta-Softmax for Long-Tailed Visual Recognition [paper]
- Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu Zhao, Shuai Yi, Hongsheng Li --NeurIPS 2020
MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler [paper]
- Zhining Liu, Pengfei Wei, Jing Jiang, Wei Cao, Jiang Bian, Yi Chang --NeurIPS 2019
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks [paper]
- Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang --ICLR 2020
Meta-weight-net: Learning an explicit mapping for sample weighting [paper]
- Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng --NeurIPS 2019
Learning to Reweight Examples for Robust Deep Learning [paper]
- Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun --ICML 2018
Learning to Model the Tail [paper]
- Yu-Xiong Wang, Deva Ramanan, Martial Hebert --NeurIPS 2017
MetaPix: Few-Shot Video Retargeting [paper]
- Jessica Lee, Deva Ramanan, Rohit Girdhar --ICLR 2020
Few-shot Object Detection via Feature Reweighting [paper]
- Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, Trevor Darrell --ICCV 2019
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment [paper]
- Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, Jiashi Feng --ICCV 2019
Meta-Learning for Few-Shot NMT Adaptation [paper]
- Amr Sharaf, Hany Hassan, Hal Daumé III --arXiv 2020
Learning to Few-Shot Learn Across Diverse Natural Language Classification Tasks [paper]
- Trapit Bansal, Rishikesh Jha, Andrew McCallum --arXiv 2020
Compositional generalization through meta sequence-to-sequence learning [paper]
- Brenden M. Lake --NeurIPS 2019
Few-Shot Representation Learning for Out-Of-Vocabulary Words [paper]
- Ziniu Hu, Ting Chen, Kai-Wei Chang, Yizhou Sun --ACL 2019
Offline Meta-Reinforcement Learning with Online Self-Supervision [paper]
- Vitchyr Pong, Ashvin Nair, Laura Smith, Catherine Huang, Sergey Levine --ICML 2022
System-Agnostic Meta-Learning for MDP-based Dynamic Scheduling via Descriptive Policy [paper]
- Lee, Hyun-Suk --AISTATS 2022
Meta Learning MDPs with Linear Transition Models [paper]
- Müller, Robert ; Pacchiano, Aldo --AISTATS 2022
CoMPS: Continual Meta Policy Search [paper]
- Glen Berseth, Zhiwei Zhang, Grace Zhang, Chelsea Finn, Sergey Levine --ICLR 2022
Modeling and Optimization Trade-off in Meta-learning [paper]
- Katelyn Gao, Ozan Sener --NeurIPS 2020
Information-theoretic Task Selection for Meta-Reinforcement Learning [paper]
- Ricardo Luna Gutierrez, Matteo Leonetti --NeurIPS 2020
On the Global Optimality of Model-Agnostic Meta-Learning: Reinforcement Learning and Supervised Learning [paper]
- Lingxiao Wang, Qi Cai, Zhuoyan Yang, Zhaoran Wang --PMLR 2020
Generalized Reinforcement Meta Learning for Few-Shot Optimization [paper]
- Raviteja Anantha, Stephen Pulman, Srinivas Chappidi --ICML 2020
VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning [paper]
- Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, Shimon Whiteson --ICLR 2020
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives [paper]
- Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, Yoshua Bengio --ICLR 2020
Meta-learning curiosity algorithms [paper]
- Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling --ICLR 2020
Meta-Q-Learning [paper]
- Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola --ICLR 2020
Guided Meta-Policy Search [paper]
- Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn
Learning meta-features for AutoML [paper]
- Herilalaina Rakotoarison, Louisot Milijaona, Andry RASOANAIVO, Michele Sebag, Marc Schoenauer --ICLR 2022
Towards Fast Adaptation of Neural Architectures with Meta Learning [paper]
- Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, Shenghua Gao --ICLR 2020
Graph HyperNetworks for Neural Architecture Search [paper]
- Chris Zhang, Mengye Ren, Raquel Urtasun --ICLR 2019
Fast Task-Aware Architecture Inference
- Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent --arXiv 2019
Bayesian Meta-network Architecture Learning
- Albert Shaw, Bo Dai, Weiyang Liu, Le Song --arXiv 2018
Meta-Learning with Fewer Tasks through Task Interpolation [paper]
- Huaxiu Yao, Linjun Zhang, Chelsea Finn --ICLR 2022
Meta-Regularization by Enforcing Mutual-Exclusiveness [paper]
- Edwin Pan, Pankaj Rajak, Shubham Shrivastava --arXiv 2021
Task-Robust Model-Agnostic Meta-Learning [paper]
- Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --NeurIPS 2020
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation [paper]
- Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim --NeurIPS 2019
Meta-Learning with Warped Gradient Descent [paper]
- Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hujun Yin, Raia Hadsell --arXiv 2019
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning [paper]
- Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, Joseph E. Gonzalez --CVPR 2019
TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning [paper]
- Sung Whan Yoon, Jun Seo, Jaekyun Moon --ICML 2019
Meta-Learning with Latent Embedding Optimization [paper]
- Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell -- ICLR 2019
Fast Task-Aware Architecture Inference
- Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, Jesse Berent --arXiv 2019
Task2Vec: Task Embedding for Meta-Learning
- Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Stefano Soatto, Pietro Perona--arXiv 2019
TADAM: Task dependent adaptive metric for improved few-shot learning
- Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste --arXiv 2019
MetaReg: Towards Domain Generalization using Meta-Regularization [paper]
- Yogesh Balaji, Swami Sankaranarayanan -- NIPS 2018
Statistical Model Aggregation via Parameter Matching[paper]
- Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang --NeurIPS 2019
Hierarchically Structured Meta-learning [paper]
- Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li --ICML 2019
Hierarchical Meta Learning [paper]
- Yingtian Zou, Jiashi Feng --arXiv 2019
MetAug: Contrastive Learning via Meta Feature Augmentation [paper]
- Jiangmeng Li, Wenwen Qiang, Changwen Zheng, Bing Su, Hui Xiong --ICML 2022
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting [paper]
- Hongxin Wei, Lei Feng, Rundong Wang, Bo An --arXiv 2020
Meta Dropout: Learning to Perturb Latent Features for Generalization [paper]
- Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang --ICLR 2020
Learning to Reweight Examples for Robust Deep Learning [paper]
- Mengye Ren, Wenyuan Zeng, Bin Yang, Raquel Urtasun --ICML 2018
Optimizing Reusable Knowledge for Continual Learning via Metalearning [paper]
- Julio Hurtado, Alain Raymond-Saez, Alvaro Soto --NeurIPS 2021
Learning where to learn: Gradient sparsity in meta and continual learning [paper]
- Johannes von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento --NeurIPS 2021
Online-Within-Online Meta-Learning [paper]
- Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, Massimiliano Pontil
Reconciling meta-learning and continual learning with online mixtures of tasks [paper]
- Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, Katherine Heller --NeurIPS 2019
Meta-Learning Representations for Continual Learning [paper]
- Khurram Javed, Martha White --NeurIPS 2019
Online Meta-Learning [paper]
- Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine --ICML 2019
Hierarchically Structured Meta-learning [paper]
- Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li --ICML 2019
A Neural-Symbolic Architecture for Inverse Graphics Improved by Lifelong Meta-Learning [paper]
- Michael Kissner, Helmut Mayer --arXiv 2019
Incremental Learning-to-Learn with Statistical Guarantees [paper]
- Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil --arXiv 2018
Meta-learning curiosity algorithms [paper]
- Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling --ICLR 2020
Domain Generalization via Model-Agnostic Learning of Semantic Features [paper]
- Qi Dou, Daniel C. Castro, Konstantinos Kamnitsas, Ben Glocker
Learning to Generalize: Meta-Learning for Domain Generalization [paper]
- Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales --AAAI 2018
Stochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learning [paper]
- Konstantinos Ι. Kalais, Sotirios Chatzis --ICML 2022
Meta-Learning with Variational Bayes [paper]
- Lucas D. Lingle --arXiv 2021
Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization [paper]
- Michael Volpp, Lukas Froehlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, Christian Daniel --ICLR 2020
Bayesian Meta Sampling for Fast Uncertainty Adaptation [paper]
- Zhenyi Wang, Yang Zhao, Ping Yu, Ruiyi Zhang, Changyou Chen --ICLR 2020
Meta-Learning Mean Functions for Gaussian Processes [paper]
- Vincent Fortuin, Heiko Strathmann, and Gunnar Rätsch --NeurIPS 2019 workshop
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks [paper]
- Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang --ICLR 2020
Meta-Learning without Memorization [paper]
- Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, Chelsea Finn --ICLR 2020
Meta-Amortized Variational Inference and Learning [paper]
- Mike Wu, Kristy Choi, Noah Goodman, Stefano Ermon --arXiv 2019
Amortized Bayesian Meta-Learning [paper]
- Sachin Ravi, Alex Beatson --ICLR 2019
Neural Processes [paper]
- Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh
Meta-Learning Probabilistic Inference For Prediction [paper]
- Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, Richard E. Turner --ICLR 2019
Meta-Learning Priors for Efficient Online Bayesian Regression [paper]
- James Harrison, Apoorva Sharma, Marco Pavone --WAFR 2018
Probabilistic Model-Agnostic Meta-Learning [paper]
- Chelsea Finn, Kelvin Xu, Sergey Levine --arXiv 2018
Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions [paper]
- Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Ali Eslami, Danilo Rezende, Oriol Vinyals, Nando de Freitas --ICLR 2018
Bayesian Model-Agnostic Meta-Learning [paper]
- Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn -- NIPS 2018
Meta-learning by adjusting priors based on extended PAC-Bayes theory [paper]
- Ron Amit , Ron Meir --ICML 2018
Neural Variational Dropout Processes [paper]
- Insu Jeon, Youngjin Park, Gunhee Kim --ICLR 2022
Neural ODE Processes [paper]
- Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, Pietro Liò --ICLR 2021
Convolutional Conditional Neural Processes [paper]
- Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, Richard E. Turner --ICLR 2020
Bootstrapping Neural Processes [paper]
- Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, Yee Whye Teh --NeurIPS 2020
MetaFun: Meta-Learning with Iterative Functional Updates [paper]
- Jin Xu, Jean-Francois Ton, Hyunjik Kim, Adam R. Kosiorek, Yee Whye Teh --ICML 2020
Sequential Neural Processes [paper]
- Gautam Singh, Jaesik Yoon, Youngsung Son, Sungjin Ahn --NeurIPS 2019
Neural Processes [paper]
- Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S.M. Ali Eslami, Yee Whye Teh --arXiv 2018
Conditional Neural Processes [paper]
- Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami --ICML 2018
Online Hyperparameter Meta-Learning with Hypergradient Distillation [paper]
- Hae Beom Lee, Hayeon Lee, JaeWoong Shin, Eunho Yang, Timothy Hospedales, Sung Ju Hwang --ICLR 2022
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels [paper]
- Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O'Boyle, Amos Storkey --NeurIPS 2020
Meta-Learning for Few-Shot NMT Adaptation [paper]
- Amr Sharaf, Hany Hassan, Hal Daumé III --arXiv 2020
Fast Context Adaptation via Meta-Learning [paper]
- Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson --ICML 2019
Zero-Shot Knowledge Distillation in Deep Networks [paper]
- Gaurav Kumar Nayak *, Konda Reddy Mopuri, Vaisakh Shaj, R. Venkatesh Babu, Anirban Chakraborty --ICML 2019
Toward Multimodal Model-Agnostic Meta-Learning [paper]
- Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim --arXiv 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [paper]
- Chelsea Finn, Pieter Abbeel, Sergey Levine -- ICML 2016
Unsupervised Learning via Meta-Learning [paper]
- Kyle Hsu, Sergey Levine, Chelsea Finn -- ICLR 2019
Meta-Learning Update Rules for Unsupervised Representation Learning [paper]
- Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein --ICLR 2019
Meta-Learning for Semi-Supervised Few-Shot Classification [paper]
- Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel --ICLR 2018
Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace [paper]
- Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, Sergey Levine --ICML 2018
MAML is a Noisy Contrastive Learner in Classification [paper]
- Chia Hsiang Kao, Wei-Chen Chiu, Pin-Yu Chen --ICLR 2022
Contrastive Learning is Just Meta-Learning [paper]
- Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, Tom Goldstein --ICLR 2022
Transferring Knowledge across Learning Processes [paper]
- Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou --ICLR 2019
Meta-Curvature [paper]
- Eunbyung Park, Junier B. Oliva --NeurIPS 2019
LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning [paper]
- Yaoyao Liu, Qianru Sun, An-An Liu, Yuting Su, Bernt Schiele, Tat-Seng Chua --CVPR 2019
Gradient-based Hyperparameter Optimization through Reversible Learning [paper]
- Dougal Maclaurin, David Duvenaud, Ryan P. Adams --ICML 2016
N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
- Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, Kris M. Kitani --ICLR 2018
Deep Kernel Transfer in Gaussian Processes for Few-shot Learning [paper]
- Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey --arXiv 2020
Deep Mean Functions for Meta-Learning in Gaussian Processes [paper]
- Vincent Fortuin, Gunnar Rätsch --arXiv 2019
Kernel Learning and Meta Kernels for Transfer Learning [paper]
- Ulrich Ruckert
A Closer Look at the Training Strategy for Modern Meta-Learning [paper]
- JIAXIN CHEN, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, Fu-lai Chung --NeurIPS 2020
Task-Robust Model-Agnostic Meta-Learning [paper]
- Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --NeurIPS 2020
FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness [paper]
- Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum --ICML 2000
Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning [paper]
- Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, Tianyi Chen --ICML 2022
Bootstrapped Meta-Learning [paper]
- Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, Satinder Singh --ICLR 2022
Learning where to learn: Gradient sparsity in meta and continual learning [paper]
- Johannes von Oswald, Dominic Zhao, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento --NeurIPS 2021
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML [paper]
- Aniruddh Raghu, Maithra Raghu, Samy Bengio, Oriol Vinyals --ICLR 2020
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients [paper]
- Shell Xu Hu, Pablo G. Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas Damianou --ICLR 2020
Transferring Knowledge across Learning Processes [paper]
- Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, Andreas Damianou --ICLR 2019
MetaInit: Initializing learning by learning to initialize [paper]
- Yann N. Dauphin, Samuel Schoenholz --NeurIPS 2019
Meta-Learning with Implicit Gradients [paper]
- Aravind Rajeswaran*, Chelsea Finn*, Sham Kakade, Sergey Levine --NeurIPS 2019
Model-Agnostic Meta-Learning using Runge-Kutta Methods [paper]
- Daniel Jiwoong Im, Yibo Jiang, Nakul Verma --arXiv
Learning to Optimize in Swarms [paper]
- Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen --arXiv 2019
Meta-Learning with Warped Gradient Descent [paper]
- Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hujun Yin, Raia Hadsell --ICLR 2020
Learning to Generalize to Unseen Tasks with Bilevel Optimization [paper]
- Hayeon Lee, Donghyun Na, Hae Beom Lee, Sung Ju Hwang --arXiv 2019
Learning to Optimize [paper]
- Ke Li Jitendra Malik --ICLR 2017
Gradient-based Hyperparameter Optimization through Reversible Learning [paper]
- Dougal Maclaurin, David Duvenaud, Ryan P. Adams --ICML 2016
Continuous-Time Meta-Learning with Forward Mode Differentiation [paper]
- Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, Pierre-Luc Bacon --ICLR 2022
Meta-learning using privileged information for dynamics [paper]
- Ben Day, Alexander Norcliffe, Jacob Moss, Pietro Liò --ICLR 2020 #Learning to Learn and SimDL
Near-Optimal Task Selection with Mutual Information for Meta-Learning [paper]
- Chen, Yizhou; Zhang, Shizhuo; Low, Bryan Kian Hsiang --AISTATS 2022
Learning Tensor Representations for Meta-Learning [paper]
- Samuel Deng, Yilin Guo, Daniel Hsu, Debmalya Mandal --AISTATS 2022
Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably? [paper]
- Lisha Chen, Tianyi Chen --AISTATS 2022
Unraveling Model-Agnostic Meta-Learning via The Adaptation Learning Rate [paper]
- Yingtian Zou, Fusheng Liu, Qianxiao Li --ICLR 2022
Task Relatedness-Based Generalization Bounds for Meta Learning [paper]
- Jiechao Guan, Zhiwu Lu --ICLR 2022
How Tight Can PAC-Bayes be in the Small Data Regime? [paper]
- Andrew Y. K. Foong, Wessel P. Bruinsma, David R. Burt, Richard E. Turner --NeurIPS 2021
A Representation Learning Perspective on the Importance of Train-Validation Splitting in Meta-Learning [paper]
- Nikunj Saunshi, Arushi Gupta, and Wei Hu --ICML 2021
Bilevel Optimization: Convergence Analysis and Enhanced Design [paper]
- Kaiyi Ji, Junjie Yang, Yingbin Liang --ICML 2021
How Important is the Train-Validation Split in Meta-Learning? [paper]
- Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason D. Lee, Sham Kakade, Huan Wang, Caiming Xiong --ICML 2021
Information-Theoretic Generalization Bounds for Meta-Learning and Applications [paper]
- Sharu Theresa Jose, Osvaldo Simeone --arXiv 2021
Modeling and Optimization Trade-off in Meta-learning [paper]
- Katelyn Gao, Ozan Sener --NeurIPS 2020
A Closer Look at the Training Strategy for Modern Meta-Learning [paper]
- JIAXIN CHEN, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, Fu-lai Chung --NeurIPS 2020
Why Does MAML Outperform ERM? An Optimization Perspective [paper]
- Liam Collins, Aryan Mokhtari, Sanjay Shakkottai --arXiv 2020
Transfer Meta-Learning: Information-Theoretic Bounds and Information Meta-Risk Minimization [paper]
- Sharu Theresa Jose, Osvaldo Simeone, Giuseppe Durisi --arXiv 2020
The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning [paper]
- Giulia Denevi, Massimiliano Pontil, Carlo Ciliberto --NeurIPS 2020
Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters [paper]
- Kaiyi Ji, Jason D. Lee, Yingbin Liang, H. Vincent Poor --NeurIPS 2020
Meta-learning for mixed linear regression [paper]
- Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, Sewoong Oh --ICML 2020
Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time
- Ferran Alet, Kenji Kawaguchi, Maria Bauza, Nurallah Giray Kuru, Tomás Lozano-Pérez, Leslie Pack Kaelbling --NeurIPS 2020 #Meta-Learning
A Theoretical Analysis of the Number of Shots in Few-Shot Learning [paper]
- Tianshi Cao, Marc T Law, Sanja Fidler --ICLR 2020
Efficient Meta Learning via Minibatch Proximal Update [paper]
- Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, Jiashi Feng --NeurIPS 2019
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms [paper]
- Alireza Fallah, Aryan Mokhtari, Asuman Ozdaglar --arXiv 2019
Meta-learners' learning dynamics are unlike learners' [paper]
- Neil C. Rabinowitz --arXiv 2019
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior [paper]
- Zi Wang, Beomjoon Kim, Leslie Pack Kaelbling --NeurIPS 2018
Incremental Learning-to-Learn with Statistical Guarantees [paper]
- Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil --UAI 2018
Meta-learning by adjusting priors based on extended PAC-Bayes theory [paper]
- Ron Amit , Ron Meir --ICML 2018
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm [paper]
- Chelsea Finn, Sergey Levine --ICLR 2018
On the Convergence of Model-Agnostic Meta-Learning [paper]
- Noah Golmant
Fast Rates by Transferring from Auxiliary Hypotheses [paper]
- Ilja Kuzborskij, Francesco Orabona --arXiv 2014
Algorithmic Stability and Meta-Learning [paper]
- Andreas Maurer --JMLR 2005
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees [paper]
- Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, Andreas Krause --ICML 2021
Meta-learning with Stochastic Linear Bandits [paper]
- Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil --arXiv 2020
Bayesian Online Meta-Learning with Laplace Approximation [paper]
- Pau Ching Yap, Hippolyt Ritter, David Barber --arXiv 2020
Online Meta-Learning on Non-convex Setting [paper]
- Zhenxun Zhuang, Yunlong Wang, Kezi Yu, Songtao Lu --arXiv 2019
Adaptive Gradient-Based Meta-Learning Methods [paper]
- Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar --NeurIPS 2019
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization [paper]
- Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, Massimiliano Pontil --NeurIPS 2019
Provable Guarantees for Gradient-Based Meta-Learning
- Mikhail Khodak Maria-Florina Balcan Ameet Talwalkar --arXiv 2019
About
A classified list of meta learning papers based on realm.
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Contributors2
Uh oh!
There was an error while loading.Please reload this page.