Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
This repository was archived by the owner on Jun 16, 2022. It is now read-only.

A simple machine learning powered captcha breaker

License

NotificationsYou must be signed in to change notification settings

jaysonsantos/captcha-breaker

Repository files navigation

A simple machine learning powered captcha breaker created using scikit-learn.For now the project is written inside a Jupyter notebook for a better visualization as this is just a proof of concept.

Code from the notebook

importmathimportosimportreimportnumpyasnpfromskimageimportimg_as_float,iofromskimage.colorimport*fromskimage.restorationimportdenoise_tv_chambollefromsklearnimportsvm,metrics# Files are named whatever-actualCaptchaTyped.pngconfirmed_images_re=re.compile(r'-([a-zA-Z0-9]{6})\.png$')
frommatplotlibimportpyplotasplt%matplotlibinline
defload_image(path):img=img_as_float(rgb2gray(io.imread(path)))[9:38,10:177]img[img!=0]=1returnimgdefget_letters(img,number=6,avg_size=29):foriinrange(number):start=i*avg_sizenimg=img.copy()[:,start:start+avg_size]width_difference=avg_size-nimg.shape[1]ifwidth_difference!=0:nimg=np.append(nimg,np.ones((nimg.shape[0],width_difference)),axis=1)yieldnimgnot_trained_captcha=load_image('captchas/captcha-54f0d97919921-9ZAC1F.png')fig,ax=plt.subplots(ncols=6)fori,letterinenumerate(get_letters(not_trained_captcha)):ax[i].imshow(letter)

png

imgs= []limit_images=30000total_to_train=int(limit_images*0.8)loaded_images=0forfilenameinos.listdir('captchas'):match=confirmed_images_re.search(filename)ifnotmatch:continuetry:imgs.append((match.group(1).lower(),load_image('captchas/{}'.format(filename))))except (IndexError,OSError):# Pillow and its errorscontinueloaded_images+=1ifloaded_images==limit_images:breakprint('{} images'.format(len(imgs)))letters_image= []letters_ascii= []forimageinimgs:letters,image=imageforcolumn,letter_imageinenumerate(get_letters(image)):letters_image.append(letter_image.flatten())letters_ascii.append(letters[column])
30000 images
model=svm.SVC(C=10,gamma=0.001,probability=False)model.fit(letters_image[:total_to_train],letters_ascii[:total_to_train])
SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,  decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',  max_iter=-1, probability=False, random_state=None, shrinking=True,  tol=0.001, verbose=False)
predicted=model.predict(letters_image[total_to_train:])expected=letters_ascii[total_to_train:]print(metrics.classification_report(expected,predicted))
             precision    recall  f1-score   support          0       0.66      0.75      0.70      1296          1       0.81      0.87      0.84      4128          2       0.94      0.95      0.95      4518          3       0.92      0.93      0.93      4420          4       0.96      0.98      0.97      4499          5       0.94      0.93      0.94      4271          6       0.90      0.94      0.92      4532          7       0.97      0.96      0.96      4578          8       0.87      0.90      0.88      4476          9       0.93      0.94      0.93      4593          a       0.98      0.97      0.97      4481          b       0.80      0.88      0.84      4339          c       0.93      0.89      0.91      4495          d       0.88      0.89      0.89      4548          e       0.90      0.90      0.90      4397          f       0.88      0.90      0.89      4359          g       0.89      0.90      0.90      4356          h       0.94      0.90      0.92      4371          i       0.81      0.83      0.82      4305          j       0.95      0.94      0.95      4363          k       0.93      0.92      0.92      4470          l       0.94      0.92      0.93      4267          m       0.97      0.95      0.96      4403          n       0.95      0.95      0.95      4501          o       0.84      0.78      0.81      4003          p       0.86      0.88      0.87      4457          q       0.95      0.96      0.96      4427          r       0.88      0.87      0.88      4399          s       0.95      0.89      0.92      4428          t       0.94      0.93      0.93      4537          u       0.95      0.90      0.92      4459          v       0.97      0.97      0.97      4412          w       0.97      0.96      0.96      4461          x       0.97      0.95      0.96      4508          y       0.97      0.94      0.95      4499          z       0.95      0.93      0.94      4444avg / total       0.92      0.92      0.92    156000
defdecode_captcha(filename,func=None):func=funcormodel.predictreturnfunc([l.flatten()forlinget_letters(load_image(filename))])filename='captchas/{}'.format(np.random.choice(os.listdir('captchas/')))print(filename,''.join(decode_captcha(filename,mo0del.predict)))
captchas/captcha-54f0d89a91c67-OFUS8R.png 0fus8r
fromsklearn.grid_searchimportGridSearchCVparams= [{'kernel': ['rbf'],'gamma': [1e-3,1e-4],'C': [1,10,100,1000]},                   {'kernel': ['linear'],'C': [1,10,100,1000]}]clf=GridSearchCV(svm.SVC(),params,n_jobs=1)# Use this to get the best params for the model# clf.fit(letters_image[:total_to_train], letters_ascii[:total_to_train])
print(clf.best_estimator_)clf.grid_scores_
%timeitdecode_captcha('captchas/captcha-54f0d99253782-wh4ow7.png')
10 loops, best of 3: 162 ms per loop

About

A simple machine learning powered captcha breaker

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp