- Notifications
You must be signed in to change notification settings - Fork37
A toolkit for visualizations in materials informatics.
License
janosh/pymatviz
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
If you use
pymatvizin your research,see how to cite. Check out33 existing papers usingpymatvizfor inspiration!
pip install pymatviz
Seepyproject.toml for available extras likepip install 'pymatviz[brillouin]' to render 3d Brillouin zones.
See the/api page.
See the Jupyter notebooks underexamples/ for how to usepymatviz. PRs with additional examples are welcome! 🙏
| matbench_dielectric_eda.ipynb | Launch Codespace | |
| mp_bimodal_e_form.ipynb | Launch Codespace | |
| matbench_perovskites_eda.ipynb | Launch Codespace | |
| mprester_ptable.ipynb | Launch Codespace |
Seepymatviz/ptable/plotly.py. The module supports heatmaps, heatmap splits (multiple values per element), histograms, scatter plots and line plots. All visualizations are interactive throughPlotly and support displaying additional data on hover.
Warning
Version 0.16.0 ofpymatviz dropped the matplotlib-based functions inptable_matplotlib.py in#270. Please use theplotly-based functions shown below instead which have feature parity, interactivity and better test coverage.
Seeexamples/mprester_ptable.ipynb.
2022-07-28-ptable_heatmap_plotly-dash-example.mp4
phonon_bands(bands_dict) | phonon_dos(doses_dict) |
|---|---|
phonon_bands_and_dos(bands_dict, doses_dict) | phonon_bands_and_dos(single_bands, single_dos) |
cluster_compositions(compositions, properties, embedding_method, projection_method, n_components=2) | cluster_compositions(compositions, properties, embedding_method, projection_method, n_components=3) |
|---|---|
Visualize 2D or 3D relationships between compositions and properties using multiple embedding and dimensionality reduction techniques:
Embedding methods:One-hot encoding of element fractions,Magpie features (elemental properties),Matscholar element embeddings,MEGNet element embeddings
Dimensionality reduction methods:PCA (linear),t-SNE (non-linear),UMAP (non-linear),Isomap (non-linear),Kernel PCA (non-linear)
Example usage:
importpymatvizaspmvfrompymatgen.coreimportCompositioncompositions= ("Fe2O3","Al2O3","SiO2","TiO2")# Create embeddingsembeddings=pmv.cluster.composition.one_hot_encode(compositions)comp_emb_map=dict(zip(compositions,embeddings,strict=True))# Plot with optional property coloringfig=pmv.cluster_compositions(compositions=comp_emb_map,properties=[1.0,2.0,3.0,4.0],# Optional property valuesprop_name="Property",# Optional property labelembedding_method="one-hot",# or "magpie", "matscholar_el", "megnet_el", etc.projection_method="pca",# or "tsne", "umap", "isomap", "kernel_pca", etc.show_chem_sys="shape",# works best for small number of compositions; "color" | "shape" | "color+shape" | Nonen_components=2,# or 3 for 3D plots)fig.show()
On the roadmap but no ETA yet.
Seepymatviz/structure/plotly.py.
structure_3d(hea_structure) | structure_3d(lco_supercell) |
|---|---|
structure_2d(six_structs) | structure_3d(six_structs) |
Seepymatviz/widgets. Interactive 3D structure, molecular dynamics trajectory and composition visualization widgets forJupyter,Marimo, and VSCode notebooks, powered byanywidget andMatterViz (https://github.com/janosh/matterviz). Supports pymatgenStructure, ASEAtoms, andPhonopyAtoms, as well as ASE,pymatgen and plain Python trajectory formats.
frompymatvizimportStructureWidget,CompositionWidget,TrajectoryWidgetfrompymatgen.coreimportStructure,Composition# Interactive 3D structure visualizationstructure=Structure.from_file("structure.cif")struct_widget=StructureWidget(structure=structure)# Interactive composition visualizationcomposition=Composition("Fe2O3")comp_widget=CompositionWidget(composition=composition)# Interactive trajectory visualizationtrajectory1= [struct1,struct2,struct3]# List of structurestraj_widget1=TrajectoryWidget(trajectory=trajectory1)trajectory2= [{"structure":struct1,"energy":1.0}, {"structure":struct2,"energy":2.0}, {"structure":struct3,"energy":3.0}]# dicts with "structure" and property valuestraj_widget2=TrajectoryWidget(trajectory=trajectory2)
Examples:
Tip
Checkout the✅ MatterViz VSCode extension for using the same viewers directly in VSCode/Cursor editor tabs for rendering local and remote files:marketplace.visualstudio.com/items?itemName=janosh.matterviz
Importingpymatviz auto-registers all widgets for their respective sets of supported objects viaregister_matterviz_widgets(). To customize the registration, useset_renderer().
brillouin_zone_3d(cubic_struct) | brillouin_zone_3d(hexagonal_struct) |
|---|---|
brillouin_zone_3d(monoclinic_struct) | brillouin_zone_3d(orthorhombic_struct) |
Seepymatviz/xrd.py.
xrd_pattern(pattern) | xrd_pattern({key1: patt1, key2: patt2}) |
|---|---|
xrd_pattern(struct_dict, stack="horizontal") | xrd_pattern(struct_dict, stack="vertical") |
element_pair_rdfs(pmg_struct) | element_pair_rdfs({"A": struct1, "B": struct2}) |
|---|---|
Seepymatviz/coordination/plotly.py.
coordination_hist(struct_dict) | coordination_hist(struct_dict, by_element=True) |
|---|---|
coordination_vs_cutoff_line(struct_dict, strategy=None) | coordination_vs_cutoff_line(struct_dict, strategy=None) |
spacegroup_sunburst([65, 134, 225, ...]) | chem_sys_sunburst(["FeO", "Fe2O3", "LiPO4", ...]) |
|---|---|
chem_env_sunburst(single_struct) | chem_env_sunburst(multiple_structs) |
Seepymatviz/treemap/chem_sys.py.
Note: For
color_by="coverage"the package must have coverage data (e.g. runpytest --cov=<pkg> --cov-report=xmland pass the resulting.coveragefile tocoverage_data_file).
rainclouds(two_key_dict) | rainclouds(three_key_dict) |
|---|---|
sankey_from_2_df_cols(df_perovskites) | sankey_from_2_df_cols(df_space_groups) |
|---|---|
Seepymatviz/bar.py.
spacegroup_bar([65, 134, 225, ...]) | spacegroup_bar(["C2/m", "P-43m", "Fm-3m", ...]) |
|---|---|
elements_hist(compositions, log=True, bar_values='count') | histogram({'key1': values1, 'key2': values2}) |
|---|---|
density_scatter(xs, ys, ...) | density_scatter_with_hist(xs, ys, ...) |
|---|---|
density_hexbin(xs, ys, ...) | density_hexbin_with_hist(xs, ys, ...) |
qq_gaussian(y_true, y_pred, y_std) | qq_gaussian(y_true, y_pred, y_std: dict) |
|---|---|
error_decay_with_uncert(y_true, y_pred, y_std) | error_decay_with_uncert(y_true, y_pred, y_std: dict) |
Seepymatviz/classify/confusion_matrix.py.
confusion_matrix(conf_mat, ...) | confusion_matrix(y_true, y_pred, ...) |
|---|---|
Seepymatviz/classify/curves.py.
roc_curve_plotly(targets, probs_positive) | precision_recall_curve_plotly(targets, probs_positive) |
|---|---|
Seecitation.cff or cite theZenodo record using the following BibTeX entry:
@software{riebesell_pymatviz_2022,title ={Pymatviz: visualization toolkit for materials informatics},author ={Riebesell, Janosh and Yang, Haoyu and Goodall, Rhys and Baird, Sterling G.},date ={2022-10-01},year ={2022},doi ={10.5281/zenodo.7486816},url ={https://github.com/janosh/pymatviz},note ={10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz},urldate ={2023-01-01}, % optional, replace with your date of accessversion ={0.8.2}, % replace with the version you use}
Sorted by number of citations, then year. Last updated 2025-10-12. Auto-generatedfrom Google Scholar. Manual additionsvia PR welcome.
- C Zeni, R Pinsler, D Zügner et al. (2023).Mattergen: a generative model for inorganic materials design (cited by 166)
- L Barroso-Luque, M Shuaibi, X Fu et al. (2024).Open materials 2024 (omat24) inorganic materials dataset and models (cited by 136)
- J Riebesell, REA Goodall, P Benner et al. (2023).Matbench Discovery--A framework to evaluate machine learning crystal stability predictions (cited by 117)
- C Chen, DT Nguyen, SJ Lee et al. (2024).Accelerating computational materials discovery with machine learning and cloud high-performance computing: from large-scale screening to experimental validation (cited by 81)
- M Giantomassi, G Materzanini (2024).Systematic assessment of various universal machine‐learning interatomic potentials (cited by 44)
- K Li, AN Rubungo, X Lei et al. (2025).Probing out-of-distribution generalization in machine learning for materials (cited by 29)
- AA Naik, C Ertural, P Benner et al. (2023).A quantum-chemical bonding database for solid-state materials (cited by 22)
- A Kapeliukha, RA Mayo (2025).MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations (cited by 15)
- Y Zhou, X He, Z Li (2025).Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning (cited by 6)
- HH Li, Q Chen, G Ceder (2024).Voltage Mining for (De) lithiation-Stabilized Cathodes and a Machine Learning Model for Li-Ion Cathode Voltage (cited by 4)
- F Therrien, JA Haibeh, D Sharma (2025).OBELiX: A curated dataset of crystal structures and experimentally measured ionic conductivities for lithium solid-state electrolytes (cited by 3)
- A Onwuli, KT Butler, A Walsh (2024).Ionic species representations for materials informatics (cited by 3)
- N Tuchinda, CA Schuh (2025).Grain Boundary Segregation and Embrittlement of Aluminum Binary Alloys from First Principles (cited by 2)
- A Peng, MY Guo (2025).The OpenLAM Challenges (cited by 1)
- N Tuchinda, CA Schuh (2025).A grain boundary embrittlement genome for substitutional cubic alloys (cited by 1)
- Giulio Benedini, Antoine Loew, Matti Hellstrom et al. (2025).Universal Machine Learning Potential for Systems with Reduced Dimensionality
- Yuan Chiang, Tobias Kreiman, Elizabeth Weaver et al. (2025).MLIP Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials through an Open and Accessible Benchmark Platform
- Orion Cohen, Janosh Riebesell, Rhys Goodall et al. (2025).TorchSim: An efficient atomistic simulation engine in PyTorch
- Alin Marin Elena, Prathami Divakar Kamath, Théo Jaffrelot Inizan et al. (2025).Machine learned potential for high-throughput phonon calculations of metal—organic frameworks
- Matthew K. Horton, Patrick Huck, Ruo Xi Yang et al. (2025).Accelerated data-driven materials science with the Materials Project
- Aaron D. Kaplan, Runze Liu, Ji Qi et al. (2025).A Foundational Potential Energy Surface Dataset for Materials
- Matthew C. Kuner, Aaron D. Kaplan, Kristin A. Persson et al. (2025).MP-ALOE: An r2SCAN dataset for universal machine learning interatomic potentials
- Anyang Peng, Xinzijian Liu, Ming-Yu Guo et al. (2025).The OpenLAM Challenges: LAM Crystal Philately competition
- Ali Ramlaoui, Martin Siron, Inel Djafar et al. (2025).LeMat-Traj: A Scalable and Unified Dataset of Materials Trajectories for Atomistic Modeling
- Fei Shuang, Zixiong Wei, Kai Liu et al. (2025).Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys
- Yingheng Tang, Wenbin Xu, Jie Cao et al. (2025).MatterChat: A Multi-Modal LLM for Material Science
- Liming Wu, Wenbing Huang, Rui Jiao et al. (2025).Siamese Foundation Models for Crystal Structure Prediction
- K Yan, M Bohde, A Kryvenko (2025).A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures
- RA Mayo (2025).Generalizable classification of crystal structure error types using graph attention networks
- Daniel W. Davies, Keith T. Butler, Adam J. Jackson et al. (2024).SMACT: Semiconducting Materials by Analogy and Chemical Theory
- Hui Zheng, Eric Sivonxay, Rasmus Christensen et al. (2024).The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity
- Ilyes Batatia, Philipp Benner, Yuan Chiang et al. (2023).A foundation model for atomistic materials chemistry
- Jack Douglas Sundberg (2022).A New Framework for Material Informatics and Its Application Toward Electride-Halide Material Systems
About
A toolkit for visualizations in materials informatics.
Topics
Resources
License
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Uh oh!
There was an error while loading.Please reload this page.