- Notifications
You must be signed in to change notification settings - Fork9
hassony2/obman_render
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Yana Hasson, Gül Varol, Dimitris Tzionas, Igor Kalevatykh, Michael J. Black, Ivan Laptev, Cordelia Schmid, CVPR 2019
This code allows togenerate synthetic images ofhands holding objects as in theObMan dataset.
In addition, hands-only images can also be generated, with hand-poses sampled randomly from theMANO hand pose space.
Examples of rendered images:
| Hands+Objects | Hands |
|---|---|
![]() | ![]() |
Rendering generates:
- rgb images
- 3D ground truth for the hand and objects
- depth maps
- segmentation maps
For additional information about the project, see:
- Project page
- Code
- DownloadBlender 2.78c (
wget https://download.blender.org/release/Blender2.78/blender-2.78c-linux-glibc219-x86_64.tar.bz2for instance) - untar
tar -xvf blender-2.78c-linux-glibc219-x86_64.tar.bz2 - Download getpip.py:
wget https://bootstrap.pypa.io/get-pip.py - Try
blender-2.78c-linux-glibc219-x86_64/2.78/python/bin/python3.5m get-pip.py- If this fails, try:
- Install pip
path/to/blender-2.78c-linux-glibc219-x86_64/2.78/python/bin/python3.5m path/to/blender-2.78c-linux-glibc219-x86_64/2.78/python/lib/python3.5/ensurepip - Try to update pip
path/to/blender-2.78c-linux-gliblender-2.78c-linux-glibc219-x86_64/2.78/python/bin/pip3 install --upgrade pip
- Install pip
- If this fails, try:
- Install dependencies
path/to/blender-2.78c-linux-glibc219-x86_64/2.78/python/bin/pip install -r requirements.txt
git clone https://github.com/hassony2/obman_rendercd obman_renderDownloadSURREAL assets
- Go to SURREALdataset request page
- Create an account, and receive an email with a username and password for data download
- Download SURREAL data dependencies using the following commands
cd downloadsh download_smpl_data.sh ../assets username passwordcd ..- Go toMANO website
- Create an account by clickingSign Up and provide your information
- Download Models and Code (the downloaded file should have the format mano_v*_*.zip). Note that all code and data from this download falls under theMANO license.
- unzip the file mano_v*_*.zip:
unzip mano_v*_*.zip - set environment variable:
export MANO_LOCATION=/path/to/mano_v*_*
- Remove
print 'FINITO'at the end of filewebuser/smpl_handpca_wrapper.py(line 144)
- print 'FINITO'- Replace
import cPickle as picklebyimport pickle
- import cPickle as pickle+ import pickle
- at top of
webuser/smpl_handpca_wrapper.py(line 23) - at top of
webuser/serialization.py(line 30) - Fix pickle encoding
- in
webuser/smpl_handpca_wrapper.py(line 74)
- in
- smpl_data = pickle.load(open(fname_or_dict))+ smpl_data = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
- in
webuser/serialization.py(line 90)
- dd = pickle.load(open(fname_or_dict))+ dd = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1')
- Fix model paths in
webuser/smpl_handpca_wrapper.py(line 81-84)
- with open('/is/ps2/dtzionas/mano/models/MANO_LEFT.pkl', 'rb') as f:- hand_l = load(f)- with open('/is/ps2/dtzionas/mano/models/MANO_RIGHT.pkl', 'rb') as f:- hand_r = load(f)+ with open('/path/to/mano_v*_*/models/MANO_LEFT.pkl', 'rb') as f:+ hand_l = load(f, encoding='latin1')+ with open('/path/to/mano_v*_*/models/MANO_RIGHT.pkl', 'rb') as f:+ hand_r = load(f, encoding='latin1')
At the time of writing the instructions mano version is 1.2 so use
- with open('/is/ps2/dtzionas/mano/models/MANO_LEFT.pkl', 'rb') as f:- hand_l = load(f)- with open('/is/ps2/dtzionas/mano/models/MANO_RIGHT.pkl', 'rb') as f:- hand_r = load(f)+ with open('/path/to/mano_v1_2/models/MANO_LEFT.pkl', 'rb') as f:+ hand_l = load(f, encoding='latin1')+ with open('/path/to/mano_v1_2/models/MANO_RIGHT.pkl', 'rb') as f:+ hand_r = load(f, encoding='latin1')
- Go toSMPL website
- Create an account by clickingSign Up and provide your information
- Download and unzip
SMPL for Python users, copy themodelsfolder toassets/models. Note that all code and data from this download falls under theSMPL license.
DownloadLSUN dataset following theinstructions.
- Download original images fromhere
Request data on theObMan webpage
Download grasp and texture zips
You should receive two links that will allow you to downloadbodywithands.zip andshapenet_grasps.zip.
- Unzip texture zip
cd assets/texturesmv path/to/downloaded/bodywithands.zip .unzip bodywithands.zipcd ../..- Unzip the grasp information
cd assets/graspsmv path/to/downloaded/shapenet_grasps.zip.unzip shapenet_grasps.zipcd ../../
- Your structure should look like this:
obman_render/ assets/ models/ SMPLH_female.pkl basicModel_f_lbs_10_207_0_v1.0.2.fbx' basicModel_m_lbs_10_207_0_v1.0.2.fbx' ... grasps/ shapenet_grasps/ shapenet_grasps_splits.csv SURREAL/ smpl_data/ smpl_data.npz ...path/to/blender -noaudio -t 1 -P blender_grasps_sacred.py -- '{"frame_nb": 10, "frame_start": 0, "results_root": "datageneration/tmp", "background_datasets": ["white"]}'
path/to/blender -noaudio -t 1 -P blender_hands_sacred.py -- '{"frame_nb": 10, "frame_start": 0, "results_root": "datageneration/tmp", "background_datasets": ["white"]}'
path/to/blender -noaudio -t 1 -P blender_hands_sacred.py -- '{"frame_nb": 10, "frame_start": 0, "results_root": "datageneration/tmp", "background_datasets": ["lsun", "imagenet"], "imagenet_path": "/path/to/imagenet", "lsun_path": "/path/to/lsun"}'
path/to/blender -noaudio -t 1 -P blender_grasps_sacred.py -- '{"frame_nb": 10, "frame_start": 0, "results_root": "datageneration/tmp", "background_datasets": ["lsun", "imagenet"], "imagenet_path": "/path/to/imagenet", "lsun_path": "/path/to/lsun"}'
If you find this code useful for your research, consider citing:
- the publication this code has been developped for
@INPROCEEDINGS{hasson19_obman, title = {Learning joint reconstruction of hands and manipulated objects}, author = {Hasson, Yana and Varol, G{\"u}l and Tzionas, Dimitris and Kalevatykh, Igor and Black, Michael J. and Laptev, Ivan and Schmid, Cordelia}, booktitle = {CVPR}, year = {2019}}- the publication it builds upon, for synthetic data generation of humans
@INPROCEEDINGS{varol17_surreal, title = {Learning from Synthetic Humans}, author = {Varol, G{\"u}l and Romero, Javier and Martin, Xavier and Mahmood, Naureen and Black, Michael J. and Laptev, Ivan and Schmid, Cordelia}, booktitle = {CVPR}, year = {2017} }- the publication describing the used hand model:MANO:
@article{MANO:SIGGRAPHASIA:2017, title = {Embodied Hands: Modeling and Capturing Hands and Bodies Together}, author = {Romero, Javier and Tzionas, Dimitrios and Black, Michael J.}, journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)}, publisher = {ACM}, month = nov, year = {2017}, url = {http://doi.acm.org/10.1145/3130800.3130883}, month_numeric = {11}}About
[cvpr19] Code to generate images from the ObMan dataset, synthetic renderings of hands holding objects (or hands in isolation)
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.

