Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

A simplification of Tensorflow Tensor Operations

License

NotificationsYou must be signed in to change notification settings

fatchur/Simple-Tensor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

versionplatformpythontensorflow

NEWS

DateNewsVersion
Sept 2019face recognition (insight face) was released for inferencing (STABLE), for training will available in the future version>= v0.7.4
August 2019deeplab semantic segmentation (PREVIEW version)was released>= v0.6.10
Mei 2019yolov3 object detection (STABLE version) was relesed> v0.5.1
April 2019Unet-segmentation (PREVIEW version)v0.4.18

Tensorflow Compatibility

Tensorflow versionSimple-Tensor Version
1.4.1 - 1.1<=v0.4.0
1.13.1 and 1.15.0>=v0.4.3

ABOUT PROJECT

This project is a simplification of tensorflow operations and related projects

DEPENDENCIES

  1. Tensorflow (1.4.1 - 1.15.0)pip3 install tensorflow-gpu
  2. Comdutilspip3 install comdutils
  3. opencv-pythonpip3 install opencv-python
  4. numpy

HOW TO USE

:shipit: Installing The Package

pip3installsimple-tensor

:shipit: Import The Package

Tensor Operations

importtensorflowastf# tensor operationsfromsimple_tensor.tensor_operationsimport*# tensor lossesfromsimple_tensor.tensor_lossesimport*# tensor metricsfromsimple_tensor.tensor_metricsimport*

This packages contains tensor operations (conv2d, conv1d, depthwise conv2d, fully connected, conv2d transpose), tensor losses (softmax & sigmoid cross entropy, MSE), and tensor metrics (accuracy). For more detail documentations about tensor operations, visitthis page

Transfer Learning Package (Image Classification)

importtensorflowastffromsimple_tensor.transfer_learning.inception_utilsimport*fromsimple_tensor.transfer_learning.inception_v4import*

This package contains a library of tensorflow implementation of Inception-v4 for image classification. Densenet, Resnet, and VGG will be added in the future version. For more detail documentations about transfer learning package, visitthis page

alt text

(img source:link)

Object Detector Package

importtensorflowastffromsimple_tensor.object_detector.detector_utilsimport*fromsimple_tensor.object_detector.yoloimportYolo

This package contains a library of tensorflow implementation of Yolov3 (training and inferencing). You can customize your yolo detector with four types of network ("big", 'medium", "small", "very_small"). For more detail documentations about object detector package (yolov3), visitthis page.

alt text

(img source: pjreddie)

Unet Segmentation Package

importtensorflowastffromsimple_tensor.segmentation.unetimportUNet

This package contains the tensorflow implementation of U-net for semantic segmentation. For more detail, visitthis page

alt text

(img source: internal)

Face Recognition Package (Insightface)

importtensorflowastffromsimple_tensor.face_recog.insight_faceimport*

This package contains the tensorflow implementation of insight face. This repo is refractoringthis github link. For more detail documentation, visitthis page

LSTM Package

stillonprogress ....

Convert Keras Model to Tensorflow Serving

importtensorflowastffromsimple_tensor.convertimport*

DOCKER

We already prepared the all in one docker for computer vision and deep learning libraries, including tensorflow 1.12, Opencv3.4.2 and contrib, CUDA 9, CUDNN 7, Keras, jupyter, numpy, sklearn, scipy, statsmodel, pandas, matplotlib, seaborn, flask, gunicorn etc. See the list of dockerfile below:

Docker: Ubuntu 16.04 with GPU (Cuda 9, cudnn 7.2) [TESTED]
Docker: Ubuntu 18.04 with GPU (Cuda 9, cudnn 7.2)
Docker: Ubuntu 16.04 without GPU (Cuda 9, cudnn 7.2) [TESTED]
Docker: Ubuntu 18.04 without GPU (Cuda 9, cudnn 7.2) [TESTED]

[8]ページ先頭

©2009-2025 Movatter.jp