Welcome to theSplink Workflow Guide!
This repository provides a structured approach to entity resolution usingSplink, enabling efficient record linkage and deduplication at scale.
Splink is a Python package for probabilistic record linkage (entity resolution) that allows you to deduplicate and link records from datasets without unique identifiers.
This workflow demonstrates best practices to:
- Clean and preprocess data for entity resolution.
- Configure Splink for optimal matching.
- Perform scalable and efficient record linkage.
- Evaluate and fine-tune results for accuracy.
To get started, install the required dependencies with my chosen backend - spark:
!pip install'splink[spark]'
Follow these steps to use this workflow:
- Prepare your data – Ensure datasets are cleaned and formatted properly.
- Define linkage rules – Configure comparison and scoring functions.
- Run Splink – Execute entity resolution with your chosen backend (Spark, DuckDB, etc.).
- Evaluate results – Analyze and refine matches for accuracy.
To get a basic Splink model up and running, use the following code. It demonstrates how to:
Estimate the parameters of a deduplication modelUse the parameter estimates to identify duplicate recordsUse clustering to generate an estimated unique person ID.
importsplink.comparison_libraryasclfromsplinkimportDuckDBAPI,Linker,SettingsCreator,block_on,splink_datasetsdb_api=DuckDBAPI()df=splink_datasets.fake_1000settings=SettingsCreator(link_type="dedupe_only",comparisons=[cl.NameComparison("first_name"),cl.JaroAtThresholds("surname"),cl.DateOfBirthComparison("dob",input_is_string=True, ),cl.ExactMatch("city").configure(term_frequency_adjustments=True),cl.EmailComparison("email"), ],blocking_rules_to_generate_predictions=[block_on("first_name","dob"),block_on("surname"), ])linker=Linker(df,settings,db_api)linker.training.estimate_probability_two_random_records_match( [block_on("first_name","surname")],recall=0.7,)linker.training.estimate_u_using_random_sampling(max_pairs=1e6)linker.training.estimate_parameters_using_expectation_maximisation(block_on("first_name","surname"))linker.training.estimate_parameters_using_expectation_maximisation(block_on("email"))pairwise_predictions=linker.inference.predict(threshold_match_weight=-5)clusters=linker.clustering.cluster_pairwise_predictions_at_threshold(pairwise_predictions,0.95)df_clusters=clusters.as_pandas_dataframe(limit=10)
You can tweak the following settings for better results:
- Blocking rules: Define rules to limit the number of comparisons.
- Scoring functions: Adjust parameters for similarity calculations.
- Threshold tuning: Optimize match acceptance criteria.
📁 splink/├── 📜 README.md├── 📦 requirements.txt├── 📁 data/ # Sample datasets├── 📁 notebooks/ # Jupyter notebooks │ ├── 📁 tutorials/ # Step-by-step guides and explanations │ ├── 📁 examples/ # Practical use cases and sample workflows ├── 📁 scripts/ # Python scripts for automation └── 📁 results/ # Output match results
This workflow is useful for:
- Customer data deduplication
- Fraud detection through identity matching
- Merging datasets across different sources
- etc. imagination is the limit
Contributions are welcome! Feel free to submit issues, suggestions, or pull requests.
Happy Linking! 🚀