Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

🐉 Compute and work with indices of effect size and standardized parameters

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

easystats/effectsize

DOIdownloadstotal

Significant is just not enough!

The goal of this package is to provide utilities to work with indices ofeffect size and standardized parameters, allowing computation andconversion of indices such as Cohen’sd,r, odds-ratios, etc.

Installation

CRANeffectsize status badgeR-CMD-checkpkgdownCodecov test coverage

Run the following to install the stable release ofeffectsize fromCRAN:

install.packages("effectsize")

Or you can install the latest development version fromR-universe:

install.packages("effectsize",repos="https://easystats.r-universe.dev/")

Documentation

DocumentationBlogFeatures

Click on the buttons above to access the packagedocumentation and theeasystats blog, andcheck-out these vignettes:

Features

This package is focused on indices of effect size. Check out the packagewebsite fora full list of features and functions provided byeffectsize.

library(effectsize)options(es.use_symbols=TRUE)# get nice symbols when printing! (On Windows, requires R >= 4.2.0)

Tip:

Instead oflibrary(effectsize), uselibrary(easystats).Thiswill make all features of the easystats-ecosystem available.

To stay updated, useeasystats::install_latest().

Effect Size Computation

The package provides functions to compute indices of effect size.

Standardized Differences (Cohen’sd, Hedges’g, Glass’delta)

cohens_d(mpg~am,data=mtcars)## Cohen's d |         95% CI## --------------------------## -1.48     | [-2.27, -0.67]#### - Estimated using pooled SD.hedges_g(mpg~am,data=mtcars)## Hedges' g |         95% CI## --------------------------## -1.44     | [-2.21, -0.65]#### - Estimated using pooled SD.glass_delta(mpg~am,data=mtcars)## Glass' Δ (adj.) |         95% CI## --------------------------------## -1.10           | [-1.80, -0.37]

effectsize also provides effect sizes forpaired standardizeddifferences,rank tests,common language effect sizes and more…

Contingency Tables

# Dependencephi(mtcars$am,mtcars$vs)## ϕ (adj.) |       95% CI## -----------------------## 0.00     | [0.00, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].cramers_v(mtcars$am,mtcars$cyl)## Cramer's V (adj.) |       95% CI## --------------------------------## 0.46              | [0.00, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].# Goodness-of-fitfei(table(mtcars$cyl),p= c(0.1,0.3,0.6))## פ‎    |       95% CI## -------------------## 0.27 | [0.17, 1.00]#### - Adjusted for uniform expected probabilities.## - One-sided CIs: upper bound fixed at [1.00].

ANOVAs (Eta2, Omega2, …)

model<- aov(mpg~factor(gear),data=mtcars)eta_squared(model)## # Effect Size for ANOVA#### Parameter    |   η² |       95% CI## ----------------------------------## factor(gear) | 0.43 | [0.18, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].omega_squared(model)## # Effect Size for ANOVA#### Parameter    |   ω² |       95% CI## ----------------------------------## factor(gear) | 0.38 | [0.14, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].epsilon_squared(model)## # Effect Size for ANOVA#### Parameter    |   ε² |       95% CI## ----------------------------------## factor(gear) | 0.39 | [0.14, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].

And more…

Effect Size Conversion

The package also provides ways of converting between different effectsizes.

d_to_r(d=0.2)## [1] 0.0995oddsratio_to_riskratio(2.6,p0=0.4)## [1] 1.59

And for recovering effect sizes from test statistics.

F_to_d(15,df=1,df_error=60)## d    |       95% CI## -------------------## 1.00 | [0.46, 1.53]F_to_r(15,df=1,df_error=60)## r    |       95% CI## -------------------## 0.45 | [0.22, 0.61]F_to_eta2(15,df=1,df_error=60)## η² (partial) |       95% CI## ---------------------------## 0.20         | [0.07, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].

Effect Size Interpretation

The package allows for an automated interpretation of different indices.

interpret_r(r=0.3)## [1] "large"## (Rules: funder2019)

Different sets of “rules of thumb” are implemented (guidelines aredetailedhere)and can be easily changed.

interpret_cohens_d(d=0.45,rules="cohen1988")## [1] "small"## (Rules: cohen1988)interpret_cohens_d(d=0.45,rules="gignac2016")## [1] "moderate"## (Rules: gignac2016)

Citation

In order to cite this package, please use the following citation:

  • Ben-Shachar M, Lüdecke D, Makowski D (2020). effectsize: Estimation ofEffect Size Indices and Standardized Parameters.Journal of OpenSource Software,5(56), 2815. doi: 10.21105/joss.02815

Corresponding BibTeX entry:

@Article{,  title = {{e}ffectsize: Estimation of Effect Size Indices and Standardized Parameters},  author = {Mattan S. Ben-Shachar and Daniel Lüdecke and Dominique Makowski},  year = {2020},  journal = {Journal of Open Source Software},  volume = {5},  number = {56},  pages = {2815},  publisher = {The Open Journal},  doi = {10.21105/joss.02815},  url = {https://doi.org/10.21105/joss.02815}}

Contributing and Support

If you have any questions regarding the the functionality of thepackage, you may either contact us via email or alsofile anissue. Anyone wishingto contribute to the package by adding functions, features, or inanother way, please followthisguideand ourcode ofconduct.

About

🐉 Compute and work with indices of effect size and standardized parameters

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Contributing

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors15


[8]ページ先頭

©2009-2025 Movatter.jp