Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork24
🐉 Compute and work with indices of effect size and standardized parameters
License
Unknown, MIT licenses found
Licenses found
easystats/effectsize
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Significant is just not enough!
The goal of this package is to provide utilities to work with indices ofeffect size and standardized parameters, allowing computation andconversion of indices such as Cohen’sd,r, odds-ratios, etc.
Run the following to install the stable release ofeffectsize fromCRAN:
install.packages("effectsize")Or you can install the latest development version fromR-universe:
install.packages("effectsize",repos="https://easystats.r-universe.dev/")
Click on the buttons above to access the packagedocumentation and theeasystats blog, andcheck-out these vignettes:
- Effect Sizes
- Effect Sizes Conversion
- Plotting Functions for the ‘effectsize’Package
- Automated Interpretation of Indices of EffectSize
This package is focused on indices of effect size. Check out the packagewebsite fora full list of features and functions provided byeffectsize.
library(effectsize)options(es.use_symbols=TRUE)# get nice symbols when printing! (On Windows, requires R >= 4.2.0)
Tip:
Instead of
library(effectsize), uselibrary(easystats).Thiswill make all features of the easystats-ecosystem available.To stay updated, use
easystats::install_latest().
The package provides functions to compute indices of effect size.
cohens_d(mpg~am,data=mtcars)## Cohen's d | 95% CI## --------------------------## -1.48 | [-2.27, -0.67]#### - Estimated using pooled SD.hedges_g(mpg~am,data=mtcars)## Hedges' g | 95% CI## --------------------------## -1.44 | [-2.21, -0.65]#### - Estimated using pooled SD.glass_delta(mpg~am,data=mtcars)## Glass' Δ (adj.) | 95% CI## --------------------------------## -1.10 | [-1.80, -0.37]
effectsize also provides effect sizes forpaired standardizeddifferences,rank tests,common language effect sizes and more…
# Dependencephi(mtcars$am,mtcars$vs)## ϕ (adj.) | 95% CI## -----------------------## 0.00 | [0.00, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].cramers_v(mtcars$am,mtcars$cyl)## Cramer's V (adj.) | 95% CI## --------------------------------## 0.46 | [0.00, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].# Goodness-of-fitfei(table(mtcars$cyl),p= c(0.1,0.3,0.6))## פ | 95% CI## -------------------## 0.27 | [0.17, 1.00]#### - Adjusted for uniform expected probabilities.## - One-sided CIs: upper bound fixed at [1.00].
model<- aov(mpg~factor(gear),data=mtcars)eta_squared(model)## # Effect Size for ANOVA#### Parameter | η² | 95% CI## ----------------------------------## factor(gear) | 0.43 | [0.18, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].omega_squared(model)## # Effect Size for ANOVA#### Parameter | ω² | 95% CI## ----------------------------------## factor(gear) | 0.38 | [0.14, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].epsilon_squared(model)## # Effect Size for ANOVA#### Parameter | ε² | 95% CI## ----------------------------------## factor(gear) | 0.39 | [0.14, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].
And more…
The package also provides ways of converting between different effectsizes.
d_to_r(d=0.2)## [1] 0.0995oddsratio_to_riskratio(2.6,p0=0.4)## [1] 1.59
And for recovering effect sizes from test statistics.
F_to_d(15,df=1,df_error=60)## d | 95% CI## -------------------## 1.00 | [0.46, 1.53]F_to_r(15,df=1,df_error=60)## r | 95% CI## -------------------## 0.45 | [0.22, 0.61]F_to_eta2(15,df=1,df_error=60)## η² (partial) | 95% CI## ---------------------------## 0.20 | [0.07, 1.00]#### - One-sided CIs: upper bound fixed at [1.00].
The package allows for an automated interpretation of different indices.
interpret_r(r=0.3)## [1] "large"## (Rules: funder2019)
Different sets of “rules of thumb” are implemented (guidelines aredetailedhere)and can be easily changed.
interpret_cohens_d(d=0.45,rules="cohen1988")## [1] "small"## (Rules: cohen1988)interpret_cohens_d(d=0.45,rules="gignac2016")## [1] "moderate"## (Rules: gignac2016)
In order to cite this package, please use the following citation:
- Ben-Shachar M, Lüdecke D, Makowski D (2020). effectsize: Estimation ofEffect Size Indices and Standardized Parameters.Journal of OpenSource Software,5(56), 2815. doi: 10.21105/joss.02815
Corresponding BibTeX entry:
@Article{, title = {{e}ffectsize: Estimation of Effect Size Indices and Standardized Parameters}, author = {Mattan S. Ben-Shachar and Daniel Lüdecke and Dominique Makowski}, year = {2020}, journal = {Journal of Open Source Software}, volume = {5}, number = {56}, pages = {2815}, publisher = {The Open Journal}, doi = {10.21105/joss.02815}, url = {https://doi.org/10.21105/joss.02815}}If you have any questions regarding the the functionality of thepackage, you may either contact us via email or alsofile anissue. Anyone wishingto contribute to the package by adding functions, features, or inanother way, please followthisguideand ourcode ofconduct.
About
🐉 Compute and work with indices of effect size and standardized parameters
Topics
Resources
License
Unknown, MIT licenses found
Licenses found
Code of conduct
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Sponsor this project
Uh oh!
There was an error while loading.Please reload this page.
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors15
Uh oh!
There was an error while loading.Please reload this page.
