|
1 | 1 | packagecom.fishercoder.solutions; |
2 | 2 |
|
3 | | -/** |
4 | | - * 1289. Minimum Falling Path Sum II |
5 | | - * |
6 | | - * Given a square grid of integers arr, a falling path with non-zero shifts is a |
7 | | - * choice of exactly one element from each row of arr, such that no two elements chosen in adjacent rows are in the same column. |
8 | | - * Return the minimum sum of a falling path with non-zero shifts. |
9 | | - * |
10 | | - * Example 1: |
11 | | - * Input: arr = [[1,2,3],[4,5,6],[7,8,9]] |
12 | | - * Output: 13 |
13 | | - * Explanation: |
14 | | - * The possible falling paths are: |
15 | | - * [1,5,9], [1,5,7], [1,6,7], [1,6,8], |
16 | | - * [2,4,8], [2,4,9], [2,6,7], [2,6,8], |
17 | | - * [3,4,8], [3,4,9], [3,5,7], [3,5,9] |
18 | | - * The falling path with the smallest sum is [1,5,7], so the answer is 13. |
19 | | - * |
20 | | - * Constraints: |
21 | | - * 1 <= arr.length == arr[i].length <= 200 |
22 | | - * -99 <= arr[i][j] <= 99 |
23 | | - * */ |
24 | 3 | publicclass_1289 { |
25 | 4 | publicstaticclassSolution1 { |
26 | 5 | publicintminFallingPathSum(int[][]arr) { |
|