Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Pebblo enables developers to safely load data and promote their Gen AI app to deployment

License

NotificationsYou must be signed in to change notification settings

daxa-ai/pebblo

Repository files navigation


GitHubMIT licenseDocumentation

PyPIPyPI - DownloadsPyPI - Python Version

LinkedInDiscordTwitter Follow

Pebblo enables developers to safely load data and promote their Gen AI app to deployment without worrying about the organization’s compliance and security requirements. The project identifies semantic topics and entities found in the loaded data and summarizes them on the UI or a PDF report.

Pebblo has these components.

  1. Pebblo Server - a REST api application with topic-classifier, entity-classifier and reporting features
  2. Pebblo SafeLoader - a thin wrapper to Gen-AI framework's data loaders
  3. Pebblo SafeRetriever - a retrieval QA chain that enforces identity and semantic rules on Vector database retrieval before LLM inference

Pebblo Server

Installation

Usingpip

pip install pebblo --extra-index-url https://packages.daxa.ai/simple/

Download python package

Alternatively, download and install the latest Pebblo python.whl package from URLhttps://packages.daxa.ai/pebblo/0.1.13/pebblo-0.1.13-py3-none-any.whl

Example:

curl -LO"https://packages.daxa.ai/pebblo/0.1.13/pebblo-0.1.13-py3-none-any.whl" pip install pebblo-0.1.13-py3-none-any.whl

Run Pebblo Server

pebblo

Pebblo Server now listens tolocalhost:8000 to accept Gen-AI application data snippets for inspection and reporting.

Pebblo Optional Flags
  • --config <file>: specify a configuration file in yaml format.

Seeconfiguration guide for knobs to control Pebblo Server behavior like enabling snippet anonymization, selecting specific report renderer, etc.

Using Docker

docker run -p 8000:8000 docker.daxa.ai/daxaai/pebblo

Local UI can be accessed by pointing the browser tohttps://localhost:8000.

Seeinstallation guide for details on how to pass custom config.yaml and accessing PDF reports in the host machine.

Troubleshooting

Refer totroubleshooting guide.

Pebblo SafeLoader

Langchain

Pebblo SafeLoader is natively supported in Langchain framework. It is available in Langchain versions>=0.1.7

Enable Pebblo in Langchain Application

AddPebbloSafeLoader wrapper to the existing Langchain document loader(s) used in the RAG application.PebbloSafeLoader is interface compatible with LangchainBaseLoader. The application can continue to useload() andlazy_load() methods as it would on a Langchain document loader.

Here is the snippet of Langchain RAG application usingCSVLoader before enablingPebbloSafeLoader.

fromlangchain_community.document_loadersimportCSVLoaderloader=CSVLoader(file_path)documents=loader.load()vectordb=Chroma.from_documents(documents,OpenAIEmbeddings())

The Pebblo SafeLoader can be enabled with few lines of code change to the above snippet.

fromlangchain_community.document_loadersimportCSVLoaderfromlangchain_community.document_loaders.pebbloimportPebbloSafeLoaderloader=PebbloSafeLoader(CSVLoader(file_path),name="acme-corp-rag-1",# App name (Mandatory)owner="Joe Smith",# Owner (Optional)description="Support productivity RAG application",# Description (Optional)    )documents=loader.load()vectordb=Chroma.from_documents(documents,OpenAIEmbeddings())

Seehere for samples with Pebblo SafeLoader enabled RAG applications andthis document for more details.

Pebblo SafeRetriever

Langchain

PebbloRetrievalQA chain uses a SafeRetrieval to enforce that the snippets used for in-context are retrievedonly from the documents authorized for the user and semantically allowed for the Gen-AI application.

Here is a sample code for the PebbloRetrievalQA withauthorized_identities from the user accessing the RAGapplication, passed inauth_context.

fromlangchain_community.chainsimportPebbloRetrievalQAfromlangchain_community.chains.pebblo_retrieval.modelsimportAuthContext,ChainInputsafe_rag_chain=PebbloRetrievalQA.from_chain_type(llm=llm,app_name="pebblo-safe-retriever-demo",owner="Joe Smith",description="Safe RAG demo using Pebblo",chain_type="stuff",retriever=vectordb.as_retriever(),verbose=True,)defask(question:str,auth_context:dict):auth_context_obj=AuthContext(**auth_context)chain_input_obj=ChainInput(query=question,auth_context=auth_context_obj)returnsafe_rag_chain.invoke(chain_input_obj.dict())

Seehere for samples with Pebblo SafeRetriever enabled RAG applications andthis document for more details.

Contribution

Pebblo is a open-source community project. If you want to contribute seeContributor Guidelines for more details.

License

Pebblo is released under the MIT License


[8]ページ先頭

©2009-2025 Movatter.jp