Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Rembg is a tool to remove images background

License

NotificationsYou must be signed in to change notification settings

danielgatis/rembg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RepoMapr

DownloadsLicenseHugging Face SpacesStreamlit AppOpen in Colab

Rembg is a tool to remove images background.

If this project has helped you, please consider making adonation.

Sponsors

UnsplashPhotoRoom Remove Background API
https://photoroom.com/api

Fast and accurate background remover API

Requirements

python: >=3.10, <3.14

Installation

If you haveonnxruntime already installed, just installrembg:

pip install rembg# for librarypip install"rembg[cli]"# for library + cli

Otherwise, installrembg with explicit CPU/GPU support.

CPU support:

pip install rembg[cpu]# for librarypip install"rembg[cpu,cli]"# for library + cli

GPU support (NVidia/Cuda):

First of all, you need to check if your system supports theonnxruntime-gpu.

Go toonnxruntime.ai and check the installation matrix.

onnxruntime-installation-matrix

If yes, just run:

pip install"rembg[gpu]"# for librarypip install"rembg[gpu,cli]"# for library + cli

Nvidia GPU may require onnxruntime-gpu, cuda, and cudnn-devel.#668 . If rembg[gpu] doesn't work and you can't install cuda or cudnn-devel, use rembg[cpu] and onnxruntime instead.

GPU support (AMD/ROCM):

ROCM support requires theonnxruntime-rocm package. Install it followingAMD's documentation.

Ifonnxruntime-rocm is installed and working, install therembg[rocm]version of rembg:

pip install"rembg[rocm]"# for librarypip install"rembg[rocm,cli]"# for library + cli

Usage as a cli

After the installation step you can use rembg just typingrembg in your terminal window.

Therembg command has 4 subcommands, one for each input type:

  • i for files
  • p for folders
  • s for http server
  • b for RGB24 pixel binary stream

You can get help about the main command using:

rembg --help

As well, about all the subcommands using:

rembg<COMMAND> --help

rembgi

Used when input and output are files.

Remove the background from a remote image

curl -s http://input.png| rembg i> output.png

Remove the background from a local file

rembg i path/to/input.png path/to/output.png

Remove the background specifying a model

rembg i -m u2netp path/to/input.png path/to/output.png

Remove the background returning only the mask

rembg i -om path/to/input.png path/to/output.png

Remove the background applying an alpha matting

rembg i -a path/to/input.png path/to/output.png

Passing extras parameters

SAM examplerembg i -m sam -x'{ "sam_prompt": [{"type": "point", "data": [724, 740], "label": 1}] }' examples/plants-1.jpg examples/plants-1.out.png
Custom model examplerembg i -m u2net_custom -x'{"model_path": "~/.u2net/u2net.onnx"}' path/to/input.png path/to/output.png

rembgp

Used when input and output are folders.

Remove the background from all images in a folder

rembg p path/to/input path/to/output

Same as before, but watching for new/changed files to process

rembg p -w path/to/input path/to/output

rembgs

Used to start http server.

rembg s --host 0.0.0.0 --port 7000 --log_level info

To see the complete endpoints documentation, go to:http://localhost:7000/api.

Remove the background from an image url

curl -s"http://localhost:7000/api/remove?url=http://input.png" -o output.png

Remove the background from an uploaded image

curl -s -F file=@/path/to/input.jpg"http://localhost:7000/api/remove"  -o output.png

rembgb

Process a sequence of RGB24 images from stdin. This is intended to be used with another program, such as FFMPEG, that outputs RGB24 pixel data to stdout, which is piped into the stdin of this program, although nothing prevents you from manually typing in images at stdin.

rembg b image_width image_height -o output_specifier

Arguments:

  • image_width : width of input image(s)
  • image_height : height of input image(s)
  • output_specifier: printf-style specifier for output filenames, for example ifoutput-%03u.png, then output files will be namedoutput-000.png,output-001.png,output-002.png, etc. Output files will be saved in PNG format regardless of the extension specified. You can omit it to write results to stdout.

Example usage with FFMPEG:

ffmpeg -i input.mp4 -ss 10 -an -f rawvideo -pix_fmt rgb24 pipe:1| rembg b 1280 720 -o folder/output-%03u.png

The width and height values must match the dimension of output images from FFMPEG. Note for FFMPEG, the "-an -f rawvideo -pix_fmt rgb24 pipe:1" part is required for the whole thing to work.

Usage as a library

Input and output as bytes

fromrembgimportremoveinput_path='input.png'output_path='output.png'withopen(input_path,'rb')asi:withopen(output_path,'wb')aso:input=i.read()output=remove(input)o.write(output)

Input and output as a PIL image

fromrembgimportremovefromPILimportImageinput_path='input.png'output_path='output.png'input=Image.open(input_path)output=remove(input)output.save(output_path)

Input and output as a numpy array

fromrembgimportremoveimportcv2input_path='input.png'output_path='output.png'input=cv2.imread(input_path)output=remove(input)cv2.imwrite(output_path,output)

Force output as bytes

fromrembgimportremoveinput_path='input.png'output_path='output.png'withopen(input_path,'rb')asi:withopen(output_path,'wb')aso:input=i.read()output=remove(input,force_return_bytes=True)o.write(output)

How to iterate over files in a performatic way

frompathlibimportPathfromrembgimportremove,new_sessionsession=new_session()forfileinPath('path/to/folder').glob('*.png'):input_path=str(file)output_path=str(file.parent/ (file.stem+".out.png"))withopen(input_path,'rb')asi:withopen(output_path,'wb')aso:input=i.read()output=remove(input,session=session)o.write(output)

To see a full list of examples on how to use rembg, go to theexamples page.

Usage as a docker

Only CPU

Just replace therembg command fordocker run danielgatis/rembg.

Try this:

docker run -v path/to/input:/rembg danielgatis/rembg i input.png path/to/output/output.png

Nvidia CUDA Hardware Acceleration

Requirement: using CUDA in docker needs yourhost hasNVIDIA Container Toolkit installed.NVIDIA Container Toolkit Install Guide

Nvidia CUDA Hardware Acceleration needs cudnn-devel so you need to build the docker image by yourself.#668

Here is a example shows you how to build an image and name itrembg-nvidia-cuda-cudnn-gpu

docker build -t rembg-nvidia-cuda-cudnn-gpu -f Dockerfile_nvidia_cuda_cudnn_gpu.

Be aware: It would take 11GB of your disk space. (The cpu version only takes about 1.6GB). Models didn't included.

After you build the image, run it like this as a cli

sudo docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v$PWD:/rembg rembg-nvidia-cuda-cudnn-gpu i -m birefnet-general input.png output.png
  • Trick 1: Actually you can also make up a nvidia-cuda-cudnn-gpu image and install rembg[gpu, cli] in it.
  • Trick 2: Try param-v /somewhereYouStoresModelFiles/:/root/.u2net so to download/store model files out of docker images. You can even comment the lineRUN rembg d u2net so when building the image, it download will no models, so you can download the specific model you want even without the default u2net model.

Models

All models are downloaded and saved in the user home folder in the.u2net directory.

The available models are:

  • u2net (download,source): A pre-trained model for general use cases.
  • u2netp (download,source): A lightweight version of u2net model.
  • u2net_human_seg (download,source): A pre-trained model for human segmentation.
  • u2net_cloth_seg (download,source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
  • silueta (download,source): Same as u2net but the size is reduced to 43Mb.
  • isnet-general-use (download,source): A new pre-trained model for general use cases.
  • isnet-anime (download,source): A high-accuracy segmentation for anime character.
  • sam (download encoder,download decoder,source): A pre-trained model for any use cases.
  • birefnet-general (download,source): A pre-trained model for general use cases.
  • birefnet-general-lite (download,source): A light pre-trained model for general use cases.
  • birefnet-portrait (download,source): A pre-trained model for human portraits.
  • birefnet-dis (download,source): A pre-trained model for dichotomous image segmentation (DIS).
  • birefnet-hrsod (download,source): A pre-trained model for high-resolution salient object detection (HRSOD).
  • birefnet-cod (download,source): A pre-trained model for concealed object detection (COD).
  • birefnet-massive (download,source): A pre-trained model with massive dataset.

How to train your own model

If You need more fine tuned models try this:#193 (comment)

Some video tutorials

References

FAQ

When will this library provide support for Python version 3.xx?

This library directly depends on theonnxruntime library. Therefore, we can only update the Python version whenonnxruntime provides support for that specific version.

Buy me a coffee

Liked some of my work? Buy me a coffee (or more likely a beer)

Buy Me A Coffee

Star History

Star History Chart

License

Copyright (c) 2020-presentDaniel Gatis

Licensed underMIT License

About

Rembg is a tool to remove images background

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors76

Languages


[8]ページ先頭

©2009-2025 Movatter.jp