Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Apache Arrow DataFusion and Ballista query engines

License

NotificationsYou must be signed in to change notification settings

cube-js/arrow-datafusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DataFusion is an extensible query execution framework, written inRust, that usesApache Arrow as itsin-memory format.

DataFusion supports both an SQL and a DataFrame API for buildinglogical query plans as well as a query optimizer and execution enginecapable of parallel execution against partitioned data sources (CSVand Parquet) using threads.

DataFusion also supports distributed query execution via theBallista crate.

Use Cases

DataFusion is used to create modern, fast and efficient datapipelines, ETL processes, and database systems, which need theperformance of Rust and Apache Arrow and want to provide their usersthe convenience of an SQL interface or a DataFrame API.

Why DataFusion?

  • High Performance: Leveraging Rust and Arrow's memory model, DataFusion achieves very high performance
  • Easy to Connect: Being part of the Apache Arrow ecosystem (Arrow, Parquet and Flight), DataFusion works well with the rest of the big data ecosystem
  • Easy to Embed: Allowing extension at almost any point in its design, DataFusion can be tailored for your specific usecase
  • High Quality: Extensively tested, both by itself and with the rest of the Arrow ecosystem, DataFusion can be used as the foundation for production systems.

Known Uses

Here are some of the projects known to use DataFusion:

(if you know of another project, please submit a PR to add a link!)

Example Usage

Run a SQL query against data stored in a CSV:

use datafusion::prelude::*;use datafusion::arrow::util::pretty::print_batches;use datafusion::arrow::record_batch::RecordBatch;#[tokio::main]asyncfnmain() -> datafusion::error::Result<()>{// register the tableletmut ctx =ExecutionContext::new();  ctx.register_csv("example","tests/example.csv",CsvReadOptions::new())?;// create a plan to run a SQL querylet df = ctx.sql("SELECT a, MIN(b) FROM example GROUP BY a LIMIT 100")?;// execute and print resultslet results:Vec<RecordBatch> = df.collect().await?;print_batches(&results)?;Ok(())}

Use the DataFrame API to process data stored in a CSV:

use datafusion::prelude::*;use datafusion::arrow::util::pretty::print_batches;use datafusion::arrow::record_batch::RecordBatch;#[tokio::main]asyncfnmain() -> datafusion::error::Result<()>{// create the dataframeletmut ctx =ExecutionContext::new();let df = ctx.read_csv("tests/example.csv",CsvReadOptions::new())?;let df = df.filter(col("a").lt_eq(col("b")))?.aggregate(vec![col("a")],vec![min(col("b"))])?.limit(100)?;// execute and print resultslet results:Vec<RecordBatch> = df.collect().await?;print_batches(&results)?;Ok(())}

Both of these examples will produce

+---+--------+| a | MIN(b) |+---+--------+| 1 | 2      |+---+--------+

Using DataFusion as a library

DataFusion ispublished on crates.io, and iswell documented on docs.rs.

To get started, add the following to yourCargo.toml file:

[dependencies]datafusion ="4.0.0-SNAPSHOT"

Using DataFusion as a binary

DataFusion also includes a simple command-line interactive SQL utility. See theCLI reference for more information.

Status

General

  • SQL Parser
  • SQL Query Planner
  • Query Optimizer
  • Constant folding
  • Join Reordering
  • Limit Pushdown
  • Projection push down
  • Predicate push down
  • Type coercion
  • Parallel query execution

SQL Support

  • Projection
  • Filter (WHERE)
  • Filter post-aggregate (HAVING)
  • Limit
  • Aggregate
  • Common math functions
  • cast
  • try_cast
  • Postgres compatible String functions
    • ascii
    • bit_length
    • btrim
    • char_length
    • character_length
    • chr
    • concat
    • concat_ws
    • initcap
    • left
    • length
    • lpad
    • ltrim
    • octet_length
    • regexp_replace
    • repeat
    • replace
    • reverse
    • right
    • rpad
    • rtrim
    • split_part
    • starts_with
    • strpos
    • substr
    • to_hex
    • translate
    • trim
  • Miscellaneous/Boolean functions
    • nullif
  • Common date/time functions
  • nested functions
    • Array of columns
  • Schema Queries
    • SHOW TABLES
    • SHOW COLUMNS
    • information_schema.{tables, columns}
    • information_schema other views
  • Sorting
  • Nested types
  • Lists
  • Subqueries
  • Common table expressions
  • Set Operations
    • UNION ALL
    • UNION
    • INTERSECT
    • MINUS
  • Joins
    • INNER JOIN
    • LEFT JOIN
    • RIGHT JOIN
    • FULL JOIN
    • CROSS JOIN
  • Window
    • Empty window
    • Common window functions
    • Window with PARTITION BY clause
    • Window with ORDER BY clause
    • Window with FILTER clause
    • Window with custom WINDOW FRAME
    • UDF and UDAF for window functions

Data Sources

  • CSV
  • Parquet primitive types
  • Parquet nested types

Extensibility

DataFusion is designed to be extensible at all points. To that end, you can provide your own custom:

  • User Defined Functions (UDFs)
  • User Defined Aggregate Functions (UDAFs)
  • User Defined Table Source (TableProvider) for tables
  • User DefinedOptimizer passes (plan rewrites)
  • User DefinedLogicalPlan nodes
  • User DefinedExecutionPlan nodes

Supported SQL

This library currently supports many SQL constructs, including

  • CREATE EXTERNAL TABLE X STORED AS PARQUET LOCATION '...'; to register a table's locations
  • SELECT ... FROM ... together with any expression
  • ALIAS to name an expression
  • CAST to change types, including e.g.Timestamp(Nanosecond, None)
  • most mathematical unary and binary expressions such as+,/,sqrt,tan,>=.
  • WHERE to filter
  • GROUP BY together with one of the following aggregations:MIN,MAX,COUNT,SUM,AVG
  • ORDER BY together with an expression and optionalASC orDESC and also optionalNULLS FIRST orNULLS LAST

Supported Functions

DataFusion strives to implement a subset of thePostgreSQL SQL dialect where possible. We explicitly choose a single dialect to maximize interoperability with other tools and allow reuse of the PostgreSQL documents and tutorials as much as possible.

Currently, only a subset of the PostgreSQL dialect is implemented, and we will document any deviations.

Schema Metadata / Information Schema Support

DataFusion supports the showing metadata about the tables available. This information can be accessed using the views of the ISO SQLinformation_schema schema or the DataFusion specificSHOW TABLES andSHOW COLUMNS commands.

More information can be found in thePostgres docs).

To show tables available for use in DataFusion, use theSHOW TABLES command or theinformation_schema.tables view:

> show tables;+---------------+--------------------+------------+------------+| table_catalog | table_schema       | table_name | table_type |+---------------+--------------------+------------+------------+| datafusion    | public             | t          | BASE TABLE || datafusion    | information_schema | tables     | VIEW       |+---------------+--------------------+------------+------------+>select*frominformation_schema.tables;+---------------+--------------------+------------+--------------+| table_catalog | table_schema       | table_name | table_type   |+---------------+--------------------+------------+--------------+| datafusion    | public             | t          | BASE TABLE   || datafusion    | information_schema | TABLES     | SYSTEM TABLE |+---------------+--------------------+------------+--------------+

To show the schema of a table in DataFusion, use theSHOW COLUMNS command or the orinformation_schema.columns view:

> show columnsfrom t;+---------------+--------------+------------+-------------+-----------+-------------+| table_catalog | table_schema | table_name | column_name | data_type | is_nullable |+---------------+--------------+------------+-------------+-----------+-------------+| datafusion    | public       | t          | a           | Int32     | NO          || datafusion    | public       | t          | b           | Utf8      | NO          || datafusion    | public       | t          | c           | Float32   | NO          |+---------------+--------------+------------+-------------+-----------+-------------+>select table_name, column_name, ordinal_position, is_nullable, data_typefrominformation_schema.columns;+------------+-------------+------------------+-------------+-----------+| table_name | column_name | ordinal_position | is_nullable | data_type |+------------+-------------+------------------+-------------+-----------+| t          | a           |0                | NO          | Int32     || t          | b           |1                | NO          | Utf8      || t          | c           |2                | NO          | Float32   |+------------+-------------+------------------+-------------+-----------+

Supported Data Types

DataFusion uses Arrow, and thus the Arrow type system, for queryexecution. The SQL types fromsqlparser-rsare mapped to Arrow types according to the following table

SQL Data TypeArrow DataType
CHARUtf8
VARCHARUtf8
UUIDNot yet supported
CLOBNot yet supported
BINARYNot yet supported
VARBINARYNot yet supported
DECIMALFloat64
FLOATFloat32
SMALLINTInt16
INTInt32
BIGINTInt64
REALFloat64
DOUBLEFloat64
BOOLEANBoolean
DATEDate32
TIMETime64(TimeUnit::Millisecond)
TIMESTAMPTimestamp(TimeUnit::Nanosecond)
INTERVALNot yet supported
REGCLASSNot yet supported
TEXTNot yet supported
BYTEANot yet supported
CUSTOMNot yet supported
ARRAYNot yet supported

Architecture Overview

There is no formal document describing DataFusion's architecture yet, but the following presentations offer a good overview of its different components and how they interact together.

  • (March 2021): The DataFusion architecture is described inQuery Engine Design and the Rust-Based DataFusion in Apache Arrow:recording (DataFusion content starts ~ 15 minutes in) andslides
  • (Feburary 2021): How DataFusion is used within the Ballista Project is described in *Ballista: Distributed Compute with Rust and Apache Arrow:recording

Developer's guide

Please seeDevelopers Guide for information about developing DataFusion.

About

Apache Arrow DataFusion and Ballista query engines

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Rust91.5%
  • Shell3.7%
  • Dockerfile2.2%
  • Python1.1%
  • TypeScript0.7%
  • Batchfile0.4%
  • Other0.4%

[8]ページ先頭

©2009-2025 Movatter.jp