Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Code for: Decoding Complexity in Chemical Compositions from Optical Absorption Spectra by Machine Learning

NotificationsYou must be signed in to change notification settings

cpfpengfei/UV-Vis-Gold-NCs

Repository files navigation

Rapid and accurate chemical composition identification is critically important in chemistry. While it can be achieved with optical absorption spectrometry by comparing the experimental spectra with the reference data when the chemical compositions are simple, such application is limited in more complicated scenarios. This is due to the difficulties in identifying optical absorption peaks (i.e., from featureless spectra) arose from the complexity. In this work, using the UV-Vis absorption spectra of metal nanoclusters (NCs) as a demonstration, we develop a machine-learning-based method to unravel the compositions of metal NCs behind the featureless spectra. By implementing a one-dimensional Convolutional Neural Network (CNN), good matches between prediction results and experimental results and low mean absolute error values are achieved on these optical absorption spectra that human cannot interpret. This work opens a door for the identification of nanomaterials at molecular precision from their optical properties, paving the way to rapid and high-throughput characterizations.

Code Availability

The code for 1D CNN, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models are in this repository. These models were compared on a fixed train-test split.

ScriptDescription
uv_data_processing.pyData preprocessing for UV-Vis and composition data
forward_hopt_full.py,reverse_hopt_full.pyHyperparameters tuning (Bayesian optimization with Gaussian process) for 1D CNN in forward and reverse predictions respectively
forward_lstm_gru_hopt.py,reverse_lstm_gru_hopt.pyHyperparameters tuning for LSTM and GRU models, argument:LSTM orGRU
run_forward_final.py,run_reverse_final.pyModel evaluations and predictions among 3 models and with training set size increment

Authors

Tiankai Chen,Jiali Li,Pengfei Cai

About

Code for: Decoding Complexity in Chemical Compositions from Optical Absorption Spectra by Machine Learning

Topics

Resources

Stars

Watchers

Forks

Contributors2

  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp