You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/dynamic_programming/knapsack.md
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -116,7 +116,7 @@ Let $A_{i, j}$ denote the $j^{th}$ item split from the $i^{th}$ item. In the tri
116
116
117
117
The grouping is made more efficient by using binary grouping.
118
118
119
-
Specifically, $A_{i, j}$ holds $2^j$ individual items ($j\in[0,\lfloor \log_2(k_i+1)\rfloor-1]$).If $k_i + 1$ is not an integer power of $2$, another bundle of size $k_i-2^{\lfloor \log_2(k_i+1)\rfloor-1}$ is used to make up for it.
119
+
Specifically, $A_{i, j}$ holds $2^j$ individual items ($j\in[0,\lfloor \log_2(k_i+1)\rfloor-1]$).If $k_i + 1$ is not an integer power of $2$, another bundle of size $k_i-(2^{\lfloor \log_2(k_i+1)\rfloor}-1)$ is used to make up for it.
120
120
121
121
Through the above splitting method, it is possible to obtain any sum of $\leq k_i$ items by selecting a few $A_{i, j}$'s. After splitting each item in the described way, it is sufficient to use 0-1 knapsack method to solve the new formulation of the problem.