|
6784 | 6784 |
|
6785 | 6785 |
|
6786 | 6786 |
|
| 6787 | + |
| 6788 | + |
| 6789 | + |
| 6790 | + |
| 6791 | + |
| 6792 | + |
6787 | 6793 |
|
6788 | 6794 |
|
6789 | 6795 |
|
|
6844 | 6850 |
|
6845 | 6851 |
|
6846 | 6852 |
|
| 6853 | + |
| 6854 | + |
| 6855 | + |
| 6856 | + |
6847 | 6857 |
|
6848 | 6858 |
|
6849 | 6859 |
|
|
6856 | 6866 | <ulclass="metadata page-metadata"data-bi-name="page info"lang="en-us"dir="ltr"> |
6857 | 6867 |
|
6858 | 6868 | Last update: |
6859 | | -<spanclass="git-revision-date-localized-plugin git-revision-date-localized-plugin-date"title="April 22, 202502:11:52 UTC">April 22, 2025</span>  |
| 6869 | +<spanclass="git-revision-date-localized-plugin git-revision-date-localized-plugin-date"title="August 11, 202508:42:20 UTC">August 11, 2025</span>  |
6860 | 6870 |
|
6861 | 6871 | <!-- Tags --> |
6862 | 6872 |
|
@@ -6911,9 +6921,9 @@ <h2 id="rotating-the-points-and-chebyshev-distance">Rotating the points and Cheb |
6911 | 6921 | <divclass="arithmatex">$$|m| + |n| = \text{max}(|m + n|, |m - n|).$$</div> |
6912 | 6922 | <p>To prove this, we just need to analyze the signs of<spanclass="arithmatex">$m$</span> and<spanclass="arithmatex">$n$</span>. And it's left as an exercise.</p> |
6913 | 6923 | <p>We may apply this equation to the Manhattan distance formula to find out that</p> |
6914 | | -<divclass="arithmatex">$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| = \text{max}(|(x_1 + y_1) - (x_2 + y_2)|, |(x_1 -y_1) - (x_2 -y_2)|).$$</div> |
6915 | | -<p>The last expression in the previous equation is the<ahref="https://en.wikipedia.org/wiki/Chebyshev_distance">Chebyshev distance</a> of the points<spanclass="arithmatex">$(x_1 + y_1,x_1 -y_1)$</span> and<spanclass="arithmatex">$(x_2 + y_2,x_2 -y_2)$</span>. This means that, after applying the transformation</p> |
6916 | | -<divclass="arithmatex">$$\alpha : (x, y) \to (x + y,x -y),$$</div> |
| 6924 | +<divclass="arithmatex">$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| = \text{max}(|(x_1 + y_1) - (x_2 + y_2)|, |(y_1 -x_1) - (y_2 -x_2)|).$$</div> |
| 6925 | +<p>The last expression in the previous equation is the<ahref="https://en.wikipedia.org/wiki/Chebyshev_distance">Chebyshev distance</a> of the points<spanclass="arithmatex">$(x_1 + y_1,y_1 -x_1)$</span> and<spanclass="arithmatex">$(x_2 + y_2,y_2 -x_2)$</span>. This means that, after applying the transformation</p> |
| 6926 | +<divclass="arithmatex">$$\alpha : (x, y) \to (x + y,y -x),$$</div> |
6917 | 6927 | <p>the Manhattan distance between the points<spanclass="arithmatex">$p$</span> and<spanclass="arithmatex">$q$</span> turns into the Chebyshev distance between<spanclass="arithmatex">$\alpha(p)$</span> and<spanclass="arithmatex">$\alpha(q)$</span>.</p> |
6918 | 6928 | <p>Also, we may realize that<spanclass="arithmatex">$\alpha$</span> is a<ahref="https://en.wikipedia.org/wiki/Spiral_similarity">spiral similarity</a> (rotation of the plane followed by a dilation about a center<spanclass="arithmatex">$O$</span>) with center<spanclass="arithmatex">$(0, 0)$</span>, rotation angle of<spanclass="arithmatex">$45^{\circ}$</span> in clockwise direction and dilation by<spanclass="arithmatex">$\sqrt{2}$</span>.</p> |
6919 | 6929 | <p>Here's an image to help visualizing the transformation:</p> |
@@ -7014,7 +7024,7 @@ <h2 id="problems">Problems<a class="headerlink" href="#problems" title="Permanen |
7014 | 7024 |
|
7015 | 7025 | <ulclass="metadata page-metadata"data-bi-name="page info"lang="en-us"dir="ltr"> |
7016 | 7026 | <spanclass="contributors-text">Contributors:</span> |
7017 | | -<ulclass="contributors"data-bi-name="contributors"><li><ahref="https://github.com/NaimSS"title="NaimSS"data-bi-name="contributorprofile"target="_blank">NaimSS</a> (71.95%)</li><li><ahref="https://github.com/mhayter"title="mhayter"data-bi-name="contributorprofile"target="_blank">mhayter</a> (11.64%)</li><li><ahref="https://github.com/gabsrp2002"title="gabsrp2002"data-bi-name="contributorprofile"target="_blank">gabsrp2002</a> (11.64%)</li><li><ahref="https://github.com/izanbf1803"title="izanbf1803"data-bi-name="contributorprofile"target="_blank">izanbf1803</a> (3.7%)</li><li><ahref="https://github.com/adamant-pwn"title="adamant-pwn"data-bi-name="contributorprofile"target="_blank">adamant-pwn</a> (1.06%)</li></ul> |
| 7027 | +<ulclass="contributors"data-bi-name="contributors"><li><ahref="https://github.com/NaimSS"title="NaimSS"data-bi-name="contributorprofile"target="_blank">NaimSS</a> (71.95%)</li><li><ahref="https://github.com/mhayter"title="mhayter"data-bi-name="contributorprofile"target="_blank">mhayter</a> (11.64%)</li><li><ahref="https://github.com/gabsrp2002"title="gabsrp2002"data-bi-name="contributorprofile"target="_blank">gabsrp2002</a> (10.05%)</li><li><ahref="https://github.com/izanbf1803"title="izanbf1803"data-bi-name="contributorprofile"target="_blank">izanbf1803</a> (3.7%)</li><li><ahref="https://github.com/Shoot"title="Shoot"data-bi-name="contributorprofile"target="_blank">Shoot</a> (1.59%)</li><li><ahref="https://github.com/adamant-pwn"title="adamant-pwn"data-bi-name="contributorprofile"target="_blank">adamant-pwn</a> (1.06%)</li></ul> |
7018 | 7028 | </ul> |
7019 | 7029 |
|
7020 | 7030 | </article> |
|