You signed in with another tab or window.Reload to refresh your session.You signed out in another tab or window.Reload to refresh your session.You switched accounts on another tab or window.Reload to refresh your session.Dismiss alert
// Choose some good generator of randomness for the shuffle
61
61
mt19937_64 gen(...);
62
62
mec enclosing_circle(vector<point> &p) {
63
+
int n = p.size();
63
64
ranges::shuffle(p, gen);
64
65
auto C = mec{p[0], p[1]};
65
66
for(int i = 0; i < n; i++) {
@@ -136,7 +137,7 @@ $$
136
137
\angle azb + \angle bca
137
138
$$
138
139
139
-
In a[cyclic quadrilateral](https://en.wikipedia.org/wiki/Cyclic_quadrilateral), if $c$ and $z$ are from the same side of $ab$, then the angles are equal, and willad up to $0^\circ$ when summed up signed (i.e. positive if counter-clockwise and negative if clockwise). Correspondingly, if $c$ and $z$ are on the opposite sides, the angles will add up to $180^\circ$.
140
+
In a[cyclic quadrilateral](https://en.wikipedia.org/wiki/Cyclic_quadrilateral), if $c$ and $z$ are from the same side of $ab$, then the angles are equal, and willadd up to $0^\circ$ when summed up signed (i.e. positive if counter-clockwise and negative if clockwise). Correspondingly, if $c$ and $z$ are on the opposite sides, the angles will add up to $180^\circ$.