Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit4cdc4df

Browse files
authored
Fibonacci: better motivation for matrix form
1 parent91672f0 commit4cdc4df

File tree

1 file changed

+41
-2
lines changed

1 file changed

+41
-2
lines changed

‎src/algebra/fibonacci-numbers.md

Lines changed: 41 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -116,9 +116,48 @@ In this way, we obtain a linear solution, $O(n)$ time, saving all the values pri
116116
117117
### Matrix form
118118
119-
It is easytoprovethefollowing relation:
119+
To go from $(F_n, F_{n-1})$to$(F_{n+1}, F_n)$, we can expressthelinear recurrence as a 2x2 matrix multiplication:
120120
121-
$$\begin{pmatrix} 1 & 1 \cr 1 & 0 \cr\end{pmatrix} ^ n = \begin{pmatrix} F_{n+1} & F_{n} \cr F_{n} & F_{n-1} \cr\end{pmatrix}$$
121+
$$
122+
\begin{pmatrix}
123+
1 & 1 \\
124+
1 & 0
125+
\end{pmatrix}
126+
\begin{pmatrix}
127+
F_n \\
128+
F_{n-1}
129+
\end{pmatrix}
130+
=
131+
\begin{pmatrix}
132+
F_n + F_{n-1} \\
133+
F_{n}
134+
\end{pmatrix}
135+
=
136+
\begin{pmatrix}
137+
F_{n+1} \\
138+
F_{n}
139+
\end{pmatrix}
140+
$$
141+
142+
This lets us treat iterating the recurrence as repeated matrix multiplication, which has nice properties. In particular,
143+
144+
$$
145+
\begin{pmatrix}
146+
1 & 1 \\
147+
1 & 0
148+
\end{pmatrix}^n
149+
\begin{pmatrix}
150+
F_1 \\
151+
F_0
152+
\end{pmatrix}
153+
=
154+
\begin{pmatrix}
155+
F_{n+1} \\
156+
F_{n}
157+
\end{pmatrix}
158+
$$
159+
160+
where $F_1 = 1, F_0 = 0$.
122161
123162
Thus, in order to find $F_n$ in $O(log n)$ time, we must raise the matrix to n. (See [Binary exponentiation](binary-exp.md))
124163

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp