|
| 1 | +importGraphVertexfrom'../../../../data-structures/graph/GraphVertex'; |
| 2 | +importGraphEdgefrom'../../../../data-structures/graph/GraphEdge'; |
| 3 | +importGraphfrom'../../../../data-structures/graph/Graph'; |
| 4 | +importfloydWarshallfrom'../floydWarshall'; |
| 5 | + |
| 6 | +describe('floydWarshall',()=>{ |
| 7 | +it('should find minimum paths to all vertices for undirected graph',()=>{ |
| 8 | +constvertexA=newGraphVertex('A'); |
| 9 | +constvertexB=newGraphVertex('B'); |
| 10 | +constvertexC=newGraphVertex('C'); |
| 11 | +constvertexD=newGraphVertex('D'); |
| 12 | +constvertexE=newGraphVertex('E'); |
| 13 | +constvertexF=newGraphVertex('F'); |
| 14 | +constvertexG=newGraphVertex('G'); |
| 15 | +constvertexH=newGraphVertex('H'); |
| 16 | + |
| 17 | +constedgeAB=newGraphEdge(vertexA,vertexB,4); |
| 18 | +constedgeAE=newGraphEdge(vertexA,vertexE,7); |
| 19 | +constedgeAC=newGraphEdge(vertexA,vertexC,3); |
| 20 | +constedgeBC=newGraphEdge(vertexB,vertexC,6); |
| 21 | +constedgeBD=newGraphEdge(vertexB,vertexD,5); |
| 22 | +constedgeEC=newGraphEdge(vertexE,vertexC,8); |
| 23 | +constedgeED=newGraphEdge(vertexE,vertexD,2); |
| 24 | +constedgeDC=newGraphEdge(vertexD,vertexC,11); |
| 25 | +constedgeDG=newGraphEdge(vertexD,vertexG,10); |
| 26 | +constedgeDF=newGraphEdge(vertexD,vertexF,2); |
| 27 | +constedgeFG=newGraphEdge(vertexF,vertexG,3); |
| 28 | +constedgeEG=newGraphEdge(vertexE,vertexG,5); |
| 29 | + |
| 30 | +constgraph=newGraph(); |
| 31 | +graph |
| 32 | +.addVertex(vertexH) |
| 33 | +.addEdge(edgeAB) |
| 34 | +.addEdge(edgeAE) |
| 35 | +.addEdge(edgeAC) |
| 36 | +.addEdge(edgeBC) |
| 37 | +.addEdge(edgeBD) |
| 38 | +.addEdge(edgeEC) |
| 39 | +.addEdge(edgeED) |
| 40 | +.addEdge(edgeDC) |
| 41 | +.addEdge(edgeDG) |
| 42 | +.addEdge(edgeDF) |
| 43 | +.addEdge(edgeFG) |
| 44 | +.addEdge(edgeEG); |
| 45 | + |
| 46 | +const{ distances, previousVertices}=floydWarshall(graph); |
| 47 | + |
| 48 | +constvertices=graph.getAllVertices(); |
| 49 | +constvertexAIndex=vertices.indexOf(vertexA); |
| 50 | +constvl=vertices.length; |
| 51 | + |
| 52 | +expect(distances[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity); |
| 53 | +expect(distances[vertexAIndex][vertexAIndex][vl]).toBe(0); |
| 54 | +expect(distances[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(4); |
| 55 | +expect(distances[vertexAIndex][vertices.indexOf(vertexE)][vl]).toBe(7); |
| 56 | +expect(distances[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(3); |
| 57 | +expect(distances[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(9); |
| 58 | +expect(distances[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(12); |
| 59 | +expect(distances[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(11); |
| 60 | + |
| 61 | +expect(previousVertices[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(vertexD); |
| 62 | +expect(previousVertices[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexB); |
| 63 | +expect(previousVertices[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexA); |
| 64 | +expect(previousVertices[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(vertexE); |
| 65 | +expect(previousVertices[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA); |
| 66 | +expect(previousVertices[vertexAIndex][vertexAIndex][vl]).toBe(null); |
| 67 | +expect(previousVertices[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(null); |
| 68 | +}); |
| 69 | + |
| 70 | +it('should find minimum paths to all vertices for directed graph with negative edge weights',()=>{ |
| 71 | +constvertexS=newGraphVertex('S'); |
| 72 | +constvertexE=newGraphVertex('E'); |
| 73 | +constvertexA=newGraphVertex('A'); |
| 74 | +constvertexD=newGraphVertex('D'); |
| 75 | +constvertexB=newGraphVertex('B'); |
| 76 | +constvertexC=newGraphVertex('C'); |
| 77 | +constvertexH=newGraphVertex('H'); |
| 78 | + |
| 79 | +constedgeSE=newGraphEdge(vertexS,vertexE,8); |
| 80 | +constedgeSA=newGraphEdge(vertexS,vertexA,10); |
| 81 | +constedgeED=newGraphEdge(vertexE,vertexD,1); |
| 82 | +constedgeDA=newGraphEdge(vertexD,vertexA,-4); |
| 83 | +constedgeDC=newGraphEdge(vertexD,vertexC,-1); |
| 84 | +constedgeAC=newGraphEdge(vertexA,vertexC,2); |
| 85 | +constedgeCB=newGraphEdge(vertexC,vertexB,-2); |
| 86 | +constedgeBA=newGraphEdge(vertexB,vertexA,1); |
| 87 | + |
| 88 | +constgraph=newGraph(true); |
| 89 | +graph |
| 90 | +.addVertex(vertexH) |
| 91 | +.addEdge(edgeSE) |
| 92 | +.addEdge(edgeSA) |
| 93 | +.addEdge(edgeED) |
| 94 | +.addEdge(edgeDA) |
| 95 | +.addEdge(edgeDC) |
| 96 | +.addEdge(edgeAC) |
| 97 | +.addEdge(edgeCB) |
| 98 | +.addEdge(edgeBA); |
| 99 | + |
| 100 | +const{ distances, previousVertices}=floydWarshall(graph); |
| 101 | + |
| 102 | +constvertices=graph.getAllVertices(); |
| 103 | +constvertexSIndex=vertices.indexOf(vertexS); |
| 104 | +constvl=vertices.length; |
| 105 | + |
| 106 | +expect(distances[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity); |
| 107 | +expect(distances[vertexSIndex][vertexSIndex][vl]).toBe(0); |
| 108 | +expect(distances[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(5); |
| 109 | +expect(distances[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(5); |
| 110 | +expect(distances[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(7); |
| 111 | +expect(distances[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(9); |
| 112 | +expect(distances[vertexSIndex][vertices.indexOf(vertexE)][vl]).toBe(8); |
| 113 | + |
| 114 | +expect(previousVertices[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(null); |
| 115 | +expect(previousVertices[vertexSIndex][vertexSIndex][vl]).toBe(null); |
| 116 | +expect(previousVertices[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexC); |
| 117 | +expect(previousVertices[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA); |
| 118 | +expect(previousVertices[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(vertexD); |
| 119 | +expect(previousVertices[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexE); |
| 120 | +}); |
| 121 | +}); |