Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Open-source search and retrieval database for AI applications.

License

NotificationsYou must be signed in to change notification settings

codeflash-ai/chroma

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chroma logo

Chroma - the open-source embedding database.
The fastest way to build Python or JavaScript LLM apps with memory!

Discord |License | Docs | Homepage

pip install chromadb# python client# for javascript, npm install chromadb!# for client-server mode, chroma run --path /chroma_db_path

Chroma Cloud

Our hosted service, Chroma Cloud, powers serverless vector and full-text search. It's extremely fast, cost-effective, scalable and painless. Create a DB and try it out in under 30 seconds with $5 of free credits.

Get started with Chroma Cloud

API

The core API is only 4 functions (run our💡 Google Colab):

importchromadb# setup Chroma in-memory, for easy prototyping. Can add persistence easily!client=chromadb.Client()# Create collection. get_collection, get_or_create_collection, delete_collection also available!collection=client.create_collection("all-my-documents")# Add docs to the collection. Can also update and delete. Row-based API coming soon!collection.add(documents=["This is document1","This is document2"],# we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as wellmetadatas=[{"source":"notion"}, {"source":"google-docs"}],# filter on these!ids=["doc1","doc2"],# unique for each doc)# Query/search 2 most similar results. You can also .get by idresults=collection.query(query_texts=["This is a query document"],n_results=2,# where={"metadata_field": "is_equal_to_this"}, # optional filter# where_document={"$contains":"search_string"}  # optional filter)

Learn about all features on ourDocs

Features

  • Simple: Fully-typed, fully-tested, fully-documented == happiness
  • Integrations:🦜️🔗 LangChain (python and js),🦙 LlamaIndex and more soon
  • Dev, Test, Prod: the same API that runs in your python notebook, scales to your cluster
  • Feature-rich: Queries, filtering, regex and more
  • Free & Open Source: Apache 2.0 Licensed

Use case: ChatGPT for ______

For example, the"Chat your data" use case:

  1. Add documents to your database. You can pass in your own embeddings, embedding function, or let Chroma embed them for you.
  2. Query relevant documents with natural language.
  3. Compose documents into the context window of an LLM likeGPT4 for additional summarization or analysis.

Embeddings?

What are embeddings?

  • Read the guide from OpenAI
  • Literal: Embedding something turns it from image/text/audio into a list of numbers. 🖼️ or 📄 =>[1.2, 2.1, ....]. This process makes documents "understandable" to a machine learning model.
  • By analogy: An embedding represents the essence of a document. This enables documents and queries with the same essence to be "near" each other and therefore easy to find.
  • Technical: An embedding is the latent-space position of a document at a layer of a deep neural network. For models trained specifically to embed data, this is the last layer.
  • A small example: If you search your photos for "famous bridge in San Francisco". By embedding this query and comparing it to the embeddings of your photos and their metadata - it should return photos of the Golden Gate Bridge.

Embeddings databases (also known asvector databases) store embeddings and allow you to search by nearest neighbors rather than by substrings like a traditional database. By default, Chroma usesSentence Transformers to embed for you but you can also use OpenAI embeddings, Cohere (multilingual) embeddings, or your own.

Get involved

Chroma is a rapidly developing project. We welcome PR contributors and ideas for how to improve the project.

Release CadenceWe currently release new tagged versions of thepypi andnpm packages on Mondays. Hotfixes go out at any time during the week.

License

Apache 2.0

About

Open-source search and retrieval database for AI applications.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Rust61.1%
  • Python20.1%
  • TypeScript8.1%
  • Go6.0%
  • Jupyter Notebook4.1%
  • JavaScript0.2%
  • Other0.4%

[8]ページ先頭

©2009-2025 Movatter.jp