Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit9037aba

Browse files
cedricfarinazzopoyea
authored andcommitted
Fix spelling in neural_network/convolution_neural_network.py (#849)
* Fix spelling in neural_network/convolution_neural_network.py* fix importSigned-off-by: cedric.farinazzo <cedric.farinazzo@epita.fr>
1 parentfc95e7a commit9037aba

File tree

1 file changed

+33
-34
lines changed

1 file changed

+33
-34
lines changed

‎neural_network/convolution_neural_network.py‎

Lines changed: 33 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -14,15 +14,16 @@
1414
Github: 245885195@qq.com
1515
Date: 2017.9.20
1616
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
17-
'''
17+
'''
1818
from __future__importprint_function
1919

20+
importpickle
2021
importnumpyasnp
2122
importmatplotlib.pyplotasplt
2223

2324
classCNN():
2425

25-
def__init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
26+
def__init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
2627
'''
2728
:param conv1_get: [a,c,d],size, number, step of convolution kernel
2829
:param size_p1: pooling size
@@ -48,32 +49,30 @@ def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.
4849
self.thre_bp3=-2*np.random.rand(self.num_bp3)+1
4950

5051

51-
defsave_model(self,save_path):
52+
defsave_model(self,save_path):
5253
#save model dict with pickle
53-
importpickle
5454
model_dic= {'num_bp1':self.num_bp1,
55-
'num_bp2':self.num_bp2,
56-
'num_bp3':self.num_bp3,
57-
'conv1':self.conv1,
58-
'step_conv1':self.step_conv1,
59-
'size_pooling1':self.size_pooling1,
60-
'rate_weight':self.rate_weight,
61-
'rate_thre':self.rate_thre,
62-
'w_conv1':self.w_conv1,
63-
'wkj':self.wkj,
64-
'vji':self.vji,
65-
'thre_conv1':self.thre_conv1,
66-
'thre_bp2':self.thre_bp2,
67-
'thre_bp3':self.thre_bp3}
55+
'num_bp2':self.num_bp2,
56+
'num_bp3':self.num_bp3,
57+
'conv1':self.conv1,
58+
'step_conv1':self.step_conv1,
59+
'size_pooling1':self.size_pooling1,
60+
'rate_weight':self.rate_weight,
61+
'rate_thre':self.rate_thre,
62+
'w_conv1':self.w_conv1,
63+
'wkj':self.wkj,
64+
'vji':self.vji,
65+
'thre_conv1':self.thre_conv1,
66+
'thre_bp2':self.thre_bp2,
67+
'thre_bp3':self.thre_bp3}
6868
withopen(save_path,'wb')asf:
6969
pickle.dump(model_dic,f)
7070

7171
print('Model saved: %s'%save_path)
7272

7373
@classmethod
74-
defReadModel(cls,model_path):
74+
defReadModel(cls,model_path):
7575
#read saved model
76-
importpickle
7776
withopen(model_path,'rb')asf:
7877
model_dic=pickle.load(f)
7978

@@ -97,13 +96,13 @@ def ReadModel(cls,model_path):
9796
returnconv_ins
9897

9998

100-
defsig(self,x):
99+
defsig(self,x):
101100
return1/ (1+np.exp(-1*x))
102101

103-
defdo_round(self,x):
102+
defdo_round(self,x):
104103
returnround(x,3)
105104

106-
defconvolute(self,data,convs,w_convs,thre_convs,conv_step):
105+
defconvolute(self,data,convs,w_convs,thre_convs,conv_step):
107106
#convolution process
108107
size_conv=convs[0]
109108
num_conv=convs[1]
@@ -132,7 +131,7 @@ def convolute(self,data,convs,w_convs,thre_convs,conv_step):
132131
focus_list=np.asarray(focus1_list)
133132
returnfocus_list,data_featuremap
134133

135-
defpooling(self,featuremaps,size_pooling,type='average_pool'):
134+
defpooling(self,featuremaps,size_pooling,type='average_pool'):
136135
#pooling process
137136
size_map=len(featuremaps[0])
138137
size_pooled=int(size_map/size_pooling)
@@ -153,7 +152,7 @@ def pooling(self,featuremaps,size_pooling,type='average_pool'):
153152
featuremap_pooled.append(map_pooled)
154153
returnfeaturemap_pooled
155154

156-
def_expand(self,datas):
155+
def_expand(self,datas):
157156
#expanding three dimension data to one dimension list
158157
data_expanded= []
159158
foriinrange(len(datas)):
@@ -164,14 +163,14 @@ def _expand(self,datas):
164163
data_expanded=np.asarray(data_expanded)
165164
returndata_expanded
166165

167-
def_expand_mat(self,data_mat):
166+
def_expand_mat(self,data_mat):
168167
#expanding matrix to one dimension list
169168
data_mat=np.asarray(data_mat)
170169
shapes=np.shape(data_mat)
171170
data_expanded=data_mat.reshape(1,shapes[0]*shapes[1])
172171
returndata_expanded
173172

174-
def_calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
173+
def_calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
175174
'''
176175
calcluate the gradient from the data slice of pool layer
177176
pd_pool: list of matrix
@@ -190,7 +189,7 @@ def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_poo
190189
pd_all.append(pd_conv2)
191190
returnpd_all
192191

193-
deftrian(self,patterns,datas_train,datas_teach,n_repeat,error_accuracy,draw_e=bool):
192+
deftrain(self,patterns,datas_train,datas_teach,n_repeat,error_accuracy,draw_e=bool):
194193
#model traning
195194
print('----------------------Start Training-------------------------')
196195
print((' - - Shape: Train_Data ',np.shape(datas_train)))
@@ -206,7 +205,7 @@ def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_
206205
data_train=np.asmatrix(datas_train[p])
207206
data_teach=np.asarray(datas_teach[p])
208207
data_focus1,data_conved1=self.convolute(data_train,self.conv1,self.w_conv1,
209-
self.thre_conv1,conv_step=self.step_conv1)
208+
self.thre_conv1,conv_step=self.step_conv1)
210209
data_pooled1=self.pooling(data_conved1,self.size_pooling1)
211210
shape_featuremap1=np.shape(data_conved1)
212211
'''
@@ -231,7 +230,7 @@ def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_
231230
pd_conv1_pooled=pd_i_all/ (self.size_pooling1*self.size_pooling1)
232231
pd_conv1_pooled=pd_conv1_pooled.T.getA().tolist()
233232
pd_conv1_all=self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
234-
shape_featuremap1[1],self.size_pooling1)
233+
shape_featuremap1[1],self.size_pooling1)
235234
#weight and threshold learning process---------
236235
#convolution layer
237236
fork_convinrange(self.conv1[1]):
@@ -268,15 +267,15 @@ def draw_error():
268267
draw_error()
269268
returnmse
270269

271-
defpredict(self,datas_test):
270+
defpredict(self,datas_test):
272271
#model predict
273272
produce_out= []
274273
print('-------------------Start Testing-------------------------')
275274
print((' - - Shape: Test_Data ',np.shape(datas_test)))
276275
forpinrange(len(datas_test)):
277276
data_test=np.asmatrix(datas_test[p])
278277
data_focus1,data_conved1=self.convolute(data_test,self.conv1,self.w_conv1,
279-
self.thre_conv1,conv_step=self.step_conv1)
278+
self.thre_conv1,conv_step=self.step_conv1)
280279
data_pooled1=self.pooling(data_conved1,self.size_pooling1)
281280
data_bp_input=self._expand(data_pooled1)
282281

@@ -289,11 +288,11 @@ def predict(self,datas_test):
289288
res= [list(map(self.do_round,each))foreachinproduce_out]
290289
returnnp.asarray(res)
291290

292-
defconvolution(self,data):
291+
defconvolution(self,data):
293292
#return the data of image after convoluting process so we can check it out
294293
data_test=np.asmatrix(data)
295294
data_focus1,data_conved1=self.convolute(data_test,self.conv1,self.w_conv1,
296-
self.thre_conv1,conv_step=self.step_conv1)
295+
self.thre_conv1,conv_step=self.step_conv1)
297296
data_pooled1=self.pooling(data_conved1,self.size_pooling1)
298297

299298
returndata_conved1,data_pooled1
@@ -303,4 +302,4 @@ def convolution(self,data):
303302
pass
304303
'''
305304
I will put the example on other file
306-
'''
305+
'''

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp