Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Wav2Vec 2.0 catalan training scripts and models

NotificationsYou must be signed in to change notification settings

ccoreilly/wav2vec2-catala

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Models de reconeixement automàtic de la parla Wav2Vec2 pel Català.

S'ha fet fine-tuning a partir de dos models base, elfacebook/wav2vec2-large-xlsr-53 i elfacebook/wav2vec2-large-100k-voxpopuli. Els podeu trobar a:

Fine-tuned Wav2Vec2 models for the Catalan language based onfacebook/wav2vec2-large-xlsr-53 andfacebook/wav2vec2-large-100k-voxpopuli

You can find the models in the huggingface repository:

Datasets

WER

Avaluada en els següents datasets no vistos durant l'entrenament:

Word error rate was evaluated on the following datasets unseen by the model:

DatasetXLSR-53VoxPopuli
Test split CV+ParlamentParla6,92%5.98%
Google Crowsourced Corpus12,99%12,14%
Audiobook “La llegenda de Sant Jordi”13,23%12,02%

Com que les dades de CommonVoice contenen metadades sobre l'edat, el gènere i la variant dialectal del parlant, podem avaluar el model segons aquests paràmetres. Desafortunadament, per alguna de les categories no hi ha prou dades com per considerar la mostra significativa, és per això que s'acompanya la taxa d'error amb la mida de la mostra.

EdatMostraXLSR-53VoxPopuli
10-19647,96%8,54%
20-293307,52%6,10%
30-393775,65%4,55%
40-496116,37%6,17%
50-594385,75%5,30%
60-691664,82%4,20%
70-79375,81%5,33%
AccentMostraXLSR-53VoxPopuli
Balear645,84%5,11%
Central12025,98%5,37%
Nord-occidental1406,60%5,77%
Septentrional755,11%5,58%
Valencià2905,69%5,30%
SexeMostraXLSR-53VoxPopuli
Femení7495,57%4,95%
Masculí12806,65%5,98%

Com fer-lo servir / Usage

importtorchimporttorchaudiofromdatasetsimportload_datasetfromtransformersimportWav2Vec2ForCTC,Wav2Vec2Processortest_dataset=load_dataset("common_voice","ca",split="test[:2%]")processor=Wav2Vec2Processor.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala")model=Wav2Vec2ForCTC.from_pretrained("ccoreilly/wav2vec2-large-100k-voxpopuli-catala")resampler=torchaudio.transforms.Resample(48_000,16_000)# Preprocessing the datasets.# We need to read the audio files as arraysdefspeech_file_to_array_fn(batch):speech_array,sampling_rate=torchaudio.load(batch["path"])batch["speech"]=resampler(speech_array).squeeze().numpy()returnbatchtest_dataset=test_dataset.map(speech_file_to_array_fn)inputs=processor(test_dataset["speech"][:2],sampling_rate=16_000,return_tensors="pt",padding=True)withtorch.no_grad():logits=model(inputs.input_values,attention_mask=inputs.attention_mask).logitspredicted_ids=torch.argmax(logits,dim=-1)print("Prediction:",processor.batch_decode(predicted_ids))print("Reference:",test_dataset["sentence"][:2])

About

Wav2Vec 2.0 catalan training scripts and models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp