Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

These datasets are collected for the GBIC project to conduct research about indoor human thermal comfort. The GBIC research project proposes to develop online thermal comfort models via a deep-learning approach and apply them to behavioral studies to drive “greener, smarter and healthier buildings” in the tropics (e.g., Singapore). Leveraging pr…

NotificationsYou must be signed in to change notification settings

cap-ntu/iTCM-Datasets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

These datasets are collected for the GBIC project to conduct research about indoor human thermal comfort. The GBIC research project proposes to develop online thermal comfort models via a deep-learning approach and apply them to behavioral studies to drive “greener, smarter and healthier buildings” in the tropics (e.g., Singapore). Leveraging privacy-preserving data analytics over information acquired from smartphone crowdsourcing and in-situ wearables measurements, the project plans to develop and validate an integrative, economical and scalable thermal comfort management system.

Metadata

Canonical URL:https://researchdata.ntu.edu.sg

Title: Related data for: Heterogeneous Transfer Learning for Thermal Comfort Modeling

Related Publication: Weizheng Hu, Yong Luo, Zongqing Lu, and Yonggang Wen. 2019. Heterogeneous Transfer Learning for Thermal Comfort Modeling. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’19). Association for Computing Machinery, New York, NY, USA, 61–70. doi: 10.1145/3360322.3360843

Grant Information: Building and Construction Authority (BCA) Singapore: NRF2015ENC-GBICRD001-012

Subject: Computer and Information Science; Medicine, Health and Life Sciences

Keywords: thermal comfort, heart rate, skin temperature, HVAC, air-conditioning, thermal sensation, predicted mean vote (PMV)

Instruction

Those files with nameno_3_thermal are used in Buildsys 2019 paper, the reason is:

We notice that the total number of +3 (hot) votes is deficient. There are only 31 “hot” votes received from 14 participants in our datasets. Thus, we consider that these “hot” votes cannot correctly reflect most of the participants' hot sensations and decide to remove them from both iTCM datasets.

.├── BuildSys Paper Datasets│   ├── buildsys_19_dataset_4314.csv│   ├── buildsys_19_dataset_person1_346.csv│   ├── buildsys_19_dataset_person2_385.csv│   └── buildsys_19_dataset_person3_345.csv// Datasets without "hot" (+3) votes (Used in Buildsys 2019 paper)│   ├── buildsys_19_dataset_4293_no_3_thermal_index.csv ()│   ├── buildsys_19_dataset_person1_345_no_3_thermal_index.csv│   ├── buildsys_19_dataset_person2_380_no_3_thermal_index.csv│   ├── buildsys_19_dataset_person3_341_no_3_thermal_index.csv├── Documents│   ├── 1) readme.txt│   ├── 2) Experiment Introduction.docx│   ├── 3) Dataset Features & Codes.docx│   └── 4) Dataset v1 Information.docx└── README.md2 directories, 13 files

Sample Data

You may find the explaination of each field in3) Dataset Features & Codes.docx.

iduser_uuidhourageweightheightgenderatrhmetclhrstati(-3-2)ati(0-5)
11b5d595c-1bb9-4f20-a78a-217958689877211974170125.3335855.036361.1923688390.54743103
21b5d595c-1bb9-4f20-a78a-217958689877211974170125.257374558.33667651.1694386690.547332-12
31b5d595c-1bb9-4f20-a78a-217958689877211974170125.31128259.001441.2075905690.54923203
41b5d595c-1bb9-4f20-a78a-217958689877221974170125.33491658.0096031.1134373810.547232-12
51b5d595c-1bb9-4f20-a78a-217958689877221974170125.33358156.9800521.1846261850.547732-12
61b5d595c-1bb9-4f20-a78a-217958689877221974170125.138550555.57042151.1468043730.54773314
71b5d595c-1bb9-4f20-a78a-217958689877221974170125.138550555.57042151.1366506690.54793303
81b5d595c-1bb9-4f20-a78a-217958689877221974170125.191895554.54025151.1843303980.54793314
91b5d595c-1bb9-4f20-a78a-217958689877221974170125.26132553.4245511.2343686970.54833214
101b5d595c-1bb9-4f20-a78a-217958689877231974170125.21870553.03464851.1742777260.54803203

Scope of Dataset (BuildSys Paper)

DatasetSize (with hot votes)Air Temperature RangeRelative Humidity Range
iTCM generic dataset4293 (4314)19.6°C - 30.6°C37.3% - 83.6%
iTCM personal datasets345 (346) + 380 (385) + 341 (345)19.6°C - 29.9°C42.4% - 75.5%

Scope of Dataset (Full Dataset)

DatasetSizeAir Temperature RangeRelative Humidity Range
iTCM generic dataset668919.6°C - 30.6°C37.3% - 83.6%
iTCM personal datasets346 + 385 + 345 + 448 + 385 + 374.19.3°C - 30.0°C37.3% - 76.2%

License

Creative Commons License

This work is licensed under aCreative Commons Attribution-NonCommercial 4.0 International License.

About

These datasets are collected for the GBIC project to conduct research about indoor human thermal comfort. The GBIC research project proposes to develop online thermal comfort models via a deep-learning approach and apply them to behavioral studies to drive “greener, smarter and healthier buildings” in the tropics (e.g., Singapore). Leveraging pr…

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp