- Notifications
You must be signed in to change notification settings - Fork35
[NAACL'21 & ACL'21] SapBERT: Self-alignment pretraining for BERT & XL-BEL: Cross-Lingual Biomedical Entity Linking.
License
cambridgeltl/sapbert
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
[news | 22 Aug 2021] SapBERT is integrated into NVIDIA's deep learning toolkit NeMo as itsentity linking module (thank you NVIDIA!). You can play with it in thisgoogle colab.
This repo holds code, data, and pretrained weights for(1) theSapBERT model presented in our NAACL 2021 paper:Self-Alignment Pretraining for Biomedical Entity Representations;(2) thecross-lingual SapBERT and a cross-lingual biomedical entity linking benchmark (XL-BEL) proposed in our ACL 2021 paper:Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking.
English Models:[SapBERT] and[SapBERT-mean-token]
Standard SapBERT as described in[Liu et al., NAACL 2021]. Trained with UMLS 2020AA (English only), usingmicrosoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
as the base model. For[SapBERT], use[CLS]
(before pooler) as the representation of the input; for[SapBERT-mean-token], use mean-pooling across all tokens.
Cross-Lingual Models:[SapBERT-XLMR] and[SapBERT-XLMR-large]
Cross-lingual SapBERT as described in[Liu et al., ACL 2021]. Trained with UMLS 2020AB (all languages), usingxlm-roberta-base
/xlm-roberta-large
as the base model. Use[CLS]
(before pooler) as the representation of the input.
The code is tested with python 3.8, torch 1.7.0 and huggingface transformers 4.4.2. Please viewrequirements.txt
for more details.
The following script converts a list of strings (entity names) into embeddings.
importnumpyasnpimporttorchfromtqdm.autoimporttqdmfromtransformersimportAutoTokenizer,AutoModeltokenizer=AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext")model=AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda()# replace with your own list of entity namesall_names= ["covid-19","Coronavirus infection","high fever","Tumor of posterior wall of oropharynx"]bs=128# batch size during inferenceall_embs= []foriintqdm(np.arange(0,len(all_names),bs)):toks=tokenizer.batch_encode_plus(all_names[i:i+bs],padding="max_length",max_length=25,truncation=True,return_tensors="pt")toks_cuda= {}fork,vintoks.items():toks_cuda[k]=v.cuda()cls_rep=model(**toks_cuda)[0][:,0,:]# use CLS representation as the embeddingall_embs.append(cls_rep.cpu().detach().numpy())all_embs=np.concatenate(all_embs,axis=0)
Please seeinference/inference_on_snomed.ipynb for a more extensive inference example.
Extract training data from UMLS as insrtructed intraining_data/generate_pretraining_data.ipynb
(we cannot directly release the training file due to licensing issues).
Run:
>>cd train/>> ./pretrain.sh 0,1
where0,1
specifies the GPU devices.
For finetuning on your customised dataset, generate data in the format of
concept_id || entity_name_1 || entity_name_2...
whereentity_name_1
andentity_name_2
are synonym pairs (belonging to the same conceptconcept_id
) sampled from a given labelled dataset. If one concept is associated with multiple entity names in the dataset, you could traverse all the pairwise combinations.
For cross-lingual SAP-tuning with general domain parallel data (muse, wiki titles, or both), the data can be found intraining_data/general_domain_parallel_data/
. An example script:train/xling_train.sh
.
For evaluation (both monlingual and cross-lingual), please viewevaluation/README.md
for details.evaluation/xl_bel/
contains the XL-BEL benchmark proposed in[Liu et al., ACL 2021].
SapBERT:
@inproceedings{liu2021self,title={Self-Alignment Pretraining for Biomedical Entity Representations},author={Liu, Fangyu and Shareghi, Ehsan and Meng, Zaiqiao and Basaldella, Marco and Collier, Nigel},booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},pages={4228--4238},month = jun,year={2021}}
Cross-lingual SapBERT and XL-BEL:
@inproceedings{liu2021learning,title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking},author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel},booktitle={Proceedings of ACL-IJCNLP 2021},pages ={565--574},month = aug,year={2021}}
Parts of the code are modified fromBioSyn. We appreciate the authors for making BioSyn open-sourced.
SapBERT is MIT licensed. See theLICENSE file for details.