Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Files for London PyData London, 2015

NotificationsYou must be signed in to change notification settings

cambridgecoding/pydata-tutorial

Repository files navigation

PyData London, 2015

What distinguishes “true artists” from “one-hit wonders” in machine learning is an understanding of how a model performs with respect to different data. This hands-on tutorial will show you how to use scikit-learn’s model evaluation functions to evaluate different models in terms of accuracy and generalisability, and search for optimal parameter configurations.

The objective of this tutorial is to give participants the skills required to validate, evaluate and fine-tune models using scikit-learn’s evaluation metrics and parameter search capabilities. It will combine both the theoretical rationale behind these methods and their code implementation. You can find more information and a rough schedule athttp://london.pydata.org/schedule/presentation/7/

Required libraries: numpy, scikit-learn, matplotlib, pandas, scipy, multilayer_perceptron (provided fromhttps://github.com/IssamLaradji/NeuralNetworks)

About

Files for London PyData London, 2015

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors2

  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp