- Notifications
You must be signed in to change notification settings - Fork310
PyTorch tutorials, examples and some books I found 【不定期更新】整理的PyTorch 最新版教程、例子和书籍
License
NotificationsYou must be signed in to change notification settings
bat67/pytorch-tutorials-examples-and-books
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
- 0.PyTorch 版本变化及迁移指南
- 1.PyTorch_for_Numpy_Users 给Numpy用户的PyTorch指南
- 2.PyTorch_Basics PyTorch基础
- 3.Linear_Regression 线性回归
- 4.Logistic_Regression Logistic 回归
- 5.Optimizer 优化器
- 6.Neural_Network 神经网络
- 7.Convolutional_Neural_Network(CNN) 卷积神经网络
- 8.Famous_CNN 经典的CNN网络
- 9.Using_Pretrained_models 使用预训练的模型
- 10.Dataset_and_Dataloader 自定义数据读取
- 11.Custom_Dataset_example 定义自己的数据集
- 12.Visdom_Visualization visdom可视化
- 13.Tensorboard_Visualization tensorboard可视化
- 14.Semantic_Segmentation 语义分割
- 15.Transfer_Learning 迁移学习
- 16.Neural_Style(StyleTransfer) 风格迁移
- A.计算机视觉与PyTorch
- PyTorch与计算机视觉简要总结
- B.PyTorch概览
Note: some of these are old version; 下面的书籍部分还不是1.x版本。
该目录更新可能有延迟,全部资料请看该文件夹内文件
- Automatic differentiation in PyTorch.pdf
- A brief summary of the PTDC ’18 PyTorch 1.0 Preview and Promise - Hacker Noon.pdf
- Deep Architectures.pdf
- Deep Architectures.pptx
- Deep Learning Toolkits II pytorch example.pdf
- Deep Learning with PyTorch - Vishnu Subramanian.pdf
- Deep-Learning-with-PyTorch.pdf
- Deep_Learning_with_PyTorch_Quick_Start_Guide.pdf
- First steps towards deep learning with pytorch.pdf
- Introduction to Tensorflow, PyTorch and Caffe.pdf
- pytorch 0.4 - tutorial - 有目录版.pdf
- PyTorch 0.4 中文文档 - 翻译.pdf
- PyTorch 1.0 Bringing research and production together Presentation.pdf
- PyTorch Recipes - A Problem-Solution Approach - Pradeepta Mishra.pdf
- PyTorch under the hood A guide to understand PyTorch internals.pdf
- pytorch-internals.pdf
- PyTorch_tutorial_0.0.4_余霆嵩.pdf
- PyTorch_tutorial_0.0.5_余霆嵩.pdf
- pytorch卷积、反卷积 - download from internet.pdf
- PyTorch深度学习实战 - 侯宜军.epub
- PyTorch深度学习实战 - 侯宜军.pdf
- 深度学习之Pytorch - 廖星宇.pdf
- 深度学习之PyTorch实战计算机视觉 - 唐进民.pdf
- 深度学习入门之PyTorch - 廖星宇(有目录).pdf
- 深度学习框架PyTorch:入门与实践 - 陈云.pdf
- Udacity: Deep Learning with PyTorch
展开查看
* Part 1: Introduction to PyTorch and using tensors* Part 2: Building fully-connected neural networks with PyTorch* Part 3: How to train a fully-connected network with backpropagation on MNIST* Part 4: Exercise - train a neural network on Fashion-MNIST* Part 5: Using a trained network for making predictions and validating networks* Part 6: How to save and load trained models* Part 7: Load image data with torchvision, also data augmentation* Part 8: Use transfer learning to train a state-of-the-art image classifier for dogs and cats
- PyTorch-Zero-To-All:Slides-newest from Google Drive
展开查看
* Lecture 01_ Overview.pptx* Lecture 02_ Linear Model.pptx* Lecture 03_ Gradient Descent.pptx* Lecture 04_ Back-propagation and PyTorch autograd.pptx* Lecture 05_ Linear regression in PyTorch way.pptx* Lecture 06_ Logistic Regression.pptx* Lecture 07_ Wide _ Deep.pptx* Lecture 08_ DataLoader.pptx* Lecture 09_ Softmax Classifier.pptx* Lecture 10_ Basic CNN.pptx* Lecture 11_ Advanced CNN.pptx* Lecture 12_ RNN.pptx* Lecture 13_ RNN II.pptx* Lecture 14_ Seq2Seq.pptx* Lecture 15_ NSML, Smartest ML Platform.pptx
- Deep Learning Course Slides and Handout - fleuret.org
展开查看
* 1-1-from-anns-to-deep-learning.pdf* 1-2-current-success.pdf* 1-3-what-is-happening.pdf* 1-4-tensors-and-linear-regression.pdf* 1-5-high-dimension-tensors.pdf* 1-6-tensor-internals.pdf* 2-1-loss-and-risk.pdf* 2-2-overfitting.pdf* 2-3-bias-variance-dilemma.pdf* 2-4-evaluation-protocols.pdf* 2-5-basic-embeddings.pdf* 3-1-perceptron.pdf* 3-2-LDA.pdf* 3-3-features.pdf* 3-4-MLP.pdf* 3-5-gradient-descent.pdf* 3-6-backprop.pdf* 4-1-DAG-networks.pdf* 4-2-autograd.pdf* 4-3-modules-and-batch-processing.pdf* 4-4-convolutions.pdf* 4-5-pooling.pdf* 4-6-writing-a-module.pdf* 5-1-cross-entropy-loss.pdf* 5-2-SGD.pdf* 5-3-optim.pdf* 5-4-l2-l1-penalties.pdf* 5-5-initialization.pdf* 5-6-architecture-and-training.pdf* 5-7-writing-an-autograd-function.pdf* 6-1-benefits-of-depth.pdf* 6-2-rectifiers.pdf* 6-3-dropout.pdf* 6-4-batch-normalization.pdf* 6-5-residual-networks.pdf* 6-6-using-GPUs.pdf* 7-1-CV-tasks.pdf* 7-2-image-classification.pdf* 7-3-object-detection.pdf* 7-4-segmentation.pdf* 7-5-dataloader-and-surgery.pdf* 8-1-looking-at-parameters.pdf* 8-2-looking-at-activations.pdf* 8-3-visualizing-in-input.pdf* 8-4-optimizing-inputs.pdf* 9-1-transposed-convolutions.pdf* 9-2-autoencoders.pdf* 9-3-denoising-and-variational-autoencoders.pdf* 9-4-NVP.pdf* 10-1-GAN.pdf* 10-2-Wasserstein-GAN.pdf* 10-3-conditional-GAN.pdf* 10-4-persistence.pdf* 11-1-RNN-basics.pdf* 11-2-LSTM-and-GRU.pdf* 11-3-word-embeddings-and-translation.pdf
展开查看
什么是PyTorch?(What is PyTorch?)
Autograd:自动求导
神经网络(Neural Networks)
训练分类器(Training a Classifier)
选读:数据并行处理(Optional: Data Parallelism)
展开查看
张量(Tensors)
自动求导(Autograd)
nn模块(nnmodule)
Some code in this repo is separated in blocks using#%%.A block is as same as a cell inJupyter Notebook. So editors/IDEs supporting this functionality is recommanded.
Such as:
About
PyTorch tutorials, examples and some books I found 【不定期更新】整理的PyTorch 最新版教程、例子和书籍
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.
