Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

agent-based modeling (ABM) framework for simulating criminal behavior, environmental influences, and law enforcement strategies using machine learning and advanced visualization tools.

NotificationsYou must be signed in to change notification settings

arhadnane/Criminal-Behavior-Modeling-Simulation

Repository files navigation

A comprehensive agent-based modeling (ABM) framework for simulating criminal behavior, environmental influences, and law enforcement strategies using machine learning and advanced visualization tools.

🎯 Project Overview

This simulation workspace provides researchers, policymakers, and law enforcement agencies with tools to:

  • Model individual criminal decision-making processes
  • Simulate routine activity theory dynamics
  • Analyze environmental influences on crime patterns
  • Test intervention strategies and policy changes
  • Generate predictive analytics for crime prevention
  • Visualize complex crime patterns and trends

🏗️ Architecture

Core Components

crime_modeling/├── agents/                 # Agent behavior models│   ├── criminal_agent.py  # Criminal decision-making and behavior│   ├── victim_agent.py    # Victim vulnerability and protection│   └── law_enforcement_agent.py  # Police patrol and response├── environment/           # Environmental modeling│   └── urban_environment.py  # Spatial grids and dynamics├── core/                  # Simulation engine│   └── simulation.py      # Main orchestration├── analytics/             # Predictive modeling│   └── predictive_model.py  # ML-based crime prediction├── visualization/         # Data visualization│   └── crime_visualization.py  # Charts and dashboards├── config/               # Configuration management│   └── settings.py       # Simulation parameters├── examples/             # Usage examples│   └── basic_simulation.py  # Getting started├── tests/                # Unit tests└── data/                # Input/output data

🚀 Quick Start

Prerequisites

  • Python 3.8+ (Tested with Python 3.12)
  • Mesa 3.2.0+ (Agent-based modeling framework)
  • VS Code (recommended)
  • Git

Installation

  1. Clone and navigate to the project:

    cd"Crime modeling"
  2. Create a virtual environment:

    python -m venv venvsource venv/bin/activate# On Windows: venv\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt

Running Your First Simulation

fromcore.simulationimportCriminalBehaviorSimulationfromconfig.settingsimportSIMULATION_CONFIG# Run a basic crime simulationsimulation=CriminalBehaviorSimulation(config=SIMULATION_CONFIG)simulation.run_simulation(steps=100)results=simulation.get_results()print(f"Simulation completed with{len(simulation.agents)} agents")

Or run the example directly:

python examples/basic_simulation.py

🎮 Interactive Dashboard

The simulation generates an interactive web dashboard atoutput/interactive_dashboard.html that includes:

  • Real-time crime mapping
  • Agent behavior visualization
  • Environmental factor analysis
  • Statistical reports and trends

🚀 Project Status:FULLY OPERATIONAL

  • Mesa 3.x Framework: ✅ Successfully integrated and tested
  • All Core Components: ✅ Working (Agents, Environment, Analytics, Visualization)
  • Real-time Simulation: ✅ Running with 260+ agent interactions per step
  • Interactive Dashboard: ✅ Web-based visualization available
  • Machine Learning: ✅ Predictive models operational
  • Test Suite: ✅ Comprehensive unit tests available

Latest Test Results: All core modules passing ✓

📊 Key Features

Agent-Based Modeling

  • Criminal Agents: Rational choice decision-making, risk assessment, routine activities
  • Victim Agents: Vulnerability factors, protective behaviors, activity patterns
  • Law Enforcement Agents: Patrol strategies, investigation, arrest procedures

Environmental Simulation

  • Spatial Grids: Lighting, surveillance, socioeconomic factors
  • Temporal Dynamics: Time-of-day effects, seasonal patterns
  • Urban Features: Population density, commercial areas, residential zones

Machine Learning Integration

  • Predictive Models: Crime hotspot identification, risk prediction
  • Feature Engineering: Spatial-temporal feature extraction
  • Model Validation: Cross-validation, performance metrics

Visualization Suite

  • Heatmaps: Crime density, risk surfaces
  • Time Series: Temporal crime patterns
  • Interactive Dashboards: Real-time simulation monitoring
  • Network Analysis: Criminal network visualization

🔬 Theoretical Foundation

Routine Activity Theory

Models the convergence of motivated offenders, suitable targets, and absence of capable guardians in space and time.

Rational Choice Theory

Simulates criminal decision-making as cost-benefit analysis considering:

  • Expected rewards
  • Risk of detection/arrest
  • Severity of punishment
  • Opportunity factors

Environmental Criminology

Incorporates spatial and temporal crime patterns:

  • Crime attractors and generators
  • Defensible space theory
  • Crime pattern theory

📈 Usage Examples

Basic Crime Simulation

fromcore.simulationimportCriminalBehaviorSimulationfromconfig.settingsimportSIMULATION_CONFIG# Initialize simulationsim=CriminalBehaviorSimulation(config=SIMULATION_CONFIG)# Run simulationsim.run_simulation(steps=1000)# Analyze resultsresults=sim.get_results()crime_patterns=sim.analyze_crime_patterns()

Predictive Modeling

fromanalytics.predictive_modelimportPredictiveModel# Initialize predictorpredictor=PredictiveModel()# Train on historical datapredictor.train(features,targets)# Generate predictionshotspots=predictor.predict_hotspots(current_conditions)risk_scores=predictor.calculate_risk_scores(locations)

Visualization

fromvisualization.crime_visualizationimportCrimeVisualizationToolsviz=CrimeVisualizationTools()# Create crime heatmapviz.create_crime_heatmap(crime_data,save_path="heatmap.png")# Generate time series analysisviz.plot_temporal_patterns(temporal_data)# Launch interactive dashboardviz.create_interactive_dashboard(simulation_data)

🧪 Testing and Validation

Run the test suite:

python -m pytest tests/ -v

Run specific test categories:

# Test agent behaviorspython -m pytest tests/test_agents.py# Test simulation enginepython -m pytest tests/test_simulation.py# Test predictive modelspython -m pytest tests/test_analytics.py

⚙️ Configuration

Customize simulation parameters inconfig/settings.py:

SIMULATION_CONFIG= {'grid_size': (100,100),'num_criminals':50,'num_victims':200,'num_police':20,'simulation_steps':1000,'crime_rate_base':0.01,'patrol_effectiveness':0.7}

📊 Output and Analysis

The simulation generates various outputs:

  • Crime Events: Location, time, type, participants
  • Agent Trajectories: Movement patterns, decision points
  • Environmental Changes: Dynamic factor evolution
  • Prediction Accuracy: Model performance metrics
  • Intervention Effects: Policy impact assessment

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch:git checkout -b feature-name
  3. Make your changes and add tests
  4. Ensure all tests pass:pytest tests/
  5. Submit a pull request

Development Guidelines

  • Follow PEP 8 style guidelines
  • Include docstrings for all public methods
  • Write unit tests for new features
  • Update documentation as needed

📚 Research Applications

Academic Research

  • Crime pattern analysis
  • Policy intervention testing
  • Theoretical model validation
  • Comparative criminology studies

Law Enforcement

  • Resource allocation optimization
  • Patrol strategy development
  • Crime prevention planning
  • Risk assessment tools

Urban Planning

  • Crime impact assessment
  • Environmental design evaluation
  • Community safety planning
  • Development impact analysis

🔧 Advanced Features

Custom Agent Development

Extend the framework with custom agent types:

fromagents.base_agentimportBaseAgentclassSecurityGuardAgent(BaseAgent):def__init__(self,unique_id,model):super().__init__(unique_id,model)self.patrol_route= []self.detection_range=5defstep(self):self.patrol()self.detect_crimes()

Integration with Real Data

Connect with external data sources:

# Import crime datacrime_data=pd.read_csv('real_crime_data.csv')sim.initialize_from_data(crime_data)# Export resultsresults=sim.get_detailed_results()results.to_csv('simulation_output.csv')

📖 Documentation

📄 License

This project is licensed under the MIT License - see theLICENSE file for details.

📞 Support

For questions, issues, or contributions:

  • Open an issue on GitHub
  • Check the documentation
  • Review example implementations

🙏 Acknowledgments

  • Mesa framework for agent-based modeling
  • Scikit-learn for machine learning capabilities
  • Plotly and Matplotlib for visualization
  • Criminological research community for theoretical foundations

Note: This simulation is designed for research and educational purposes. Real-world crime prediction and prevention should involve domain experts and consider ethical implications.

About

agent-based modeling (ABM) framework for simulating criminal behavior, environmental influences, and law enforcement strategies using machine learning and advanced visualization tools.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp