Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries

NotificationsYou must be signed in to change notification settings

XiuzeZhou/RUL

Repository files navigation

Results of Transformer

Figures of NASA

Figures of CALCE

Supplement

Due to the length of the paper, the two parameters ofdropout andnoise_level are not discussed. By setting these two parameters, better results can be obtained than in the paper.

  • noise level = 0.01: Setting the value of 1% disturbance is best: too large will degrade performance, too small will have little effect.

  • dropout = 1e-4~1e-3: Set a small value for the network dropout to ensure the robustness of the model.

Packages

Update

  • 6/5/2024, add figures of model and prediction
  • 1/3/2024, upload the open sorce of AttMoE
  • 24/2/2022,Change some variable names

Dataset CALCE processing reference

https://github.com/konkon3249/BatteryLifePrediction

E-mail

Please feel free to contact me:zhouxiuze@foxmail.com

More (更多内容)

  1. 马里兰大学锂电池数据集 CALCE,基于 Python 的锂电池寿命预测:https://snailwish.com/437/

  2. NASA 锂电池数据集,基于 Python 的锂电池寿命预测:https://snailwish.com/395/

  3. NASA 锂电池数据集,基于 python 的 MLP 锂电池寿命预测:https://snailwish.com/427/

  4. NASA 和 CALCE 锂电池数据集,基于 Pytorch 的 RNN、LSTM、GRU 寿命预测:https://snailwish.com/497/

  5. 基于 Pytorch 的 Transformer 锂电池寿命预测:https://snailwish.com/555/

  6. 锂电池研究之七——基于 Pytorch 的高斯函数拟合时间序列数据:https://snailwish.com/576/

Citation

@article{chen2022transformer,  title={Transformer network for remaining useful life prediction of lithium-ion batteries},  author={Chen, Daoquan and Hong, Weicong and Zhou, Xiuze},  journal={Ieee Access},  volume={10},  pages={19621--19628},  year={2022},  publisher={IEEE}}@article{chen2024attmoe,  title={AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries},  author={Chen, Daoquan and Zhou, Xiuze},  journal={Journal of Energy Storage},  volume={84},  pages={110780},  year={2024},  publisher={Elsevier}}

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp