- Notifications
You must be signed in to change notification settings - Fork65
XiuzeZhou/RUL
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Figures of NASA
Figures of CALCE
Due to the length of the paper, the two parameters ofdropout andnoise_level are not discussed. By setting these two parameters, better results can be obtained than in the paper.
noise level = 0.01: Setting the value of 1% disturbance is best: too large will degrade performance, too small will have little effect.
dropout = 1e-4~1e-3: Set a small value for the network dropout to ensure the robustness of the model.
pytorch 1.8.0
pandas 0.24.2
mixture_of_experts 0.2.1 (for AttMoE, github:https://github.com/lucidrains/mixture-of-experts)
- 6/5/2024, add figures of model and prediction
- 1/3/2024, upload the open sorce of AttMoE
- 24/2/2022,Change some variable names
Dataset CALCE processing reference
https://github.com/konkon3249/BatteryLifePrediction
Please feel free to contact me:zhouxiuze@foxmail.com
马里兰大学锂电池数据集 CALCE,基于 Python 的锂电池寿命预测:https://snailwish.com/437/
NASA 锂电池数据集,基于 Python 的锂电池寿命预测:https://snailwish.com/395/
NASA 锂电池数据集,基于 python 的 MLP 锂电池寿命预测:https://snailwish.com/427/
NASA 和 CALCE 锂电池数据集,基于 Pytorch 的 RNN、LSTM、GRU 寿命预测:https://snailwish.com/497/
基于 Pytorch 的 Transformer 锂电池寿命预测:https://snailwish.com/555/
锂电池研究之七——基于 Pytorch 的高斯函数拟合时间序列数据:https://snailwish.com/576/
@article{chen2022transformer, title={Transformer network for remaining useful life prediction of lithium-ion batteries}, author={Chen, Daoquan and Hong, Weicong and Zhou, Xiuze}, journal={Ieee Access}, volume={10}, pages={19621--19628}, year={2022}, publisher={IEEE}}@article{chen2024attmoe, title={AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries}, author={Chen, Daoquan and Zhou, Xiuze}, journal={Journal of Energy Storage}, volume={84}, pages={110780}, year={2024}, publisher={Elsevier}}