- Notifications
You must be signed in to change notification settings - Fork11
A simple image dataset EDA tool (CLI / Code)
License
Soongja/basic-image-eda
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
A simple multiprocessing EDA tool to check basic information of images under a directory(images are found recursively). This tool was made to quickly check info and prevent mistakes on reading, resizing, and normalizing images as inputs for neural networks. It can be used when first joining an image competition or training CNNs with images!
Notes:
- All images are converted to 3-channel(rgb) images. When images that have various channels are mixed, some results can be misleading.
- uint8 and uint16 data types are supported. If different data types are mixed, error occurs.
- Supported extensions: jpg, jpeg, jpe, png, tif, tiff, bmp, ppm, pbm, pgm, sr, ras, webp
pip install basic-image-eda
or (latest version)
pip install git+https://github.com/Soongja/basic-image-eda
prerequisites:
- opencv-python
- numpy
- matplotlib
- skimage.io
- tifffile
- tqdm
simple one line command!
basic-image-eda<data_dir>
or
basic-image-eda<data_dir> -e png tiff -t 12 --dimension_plot --channel_hist --nonzero --hw_division_factor 2.0> eda.txtOptions: -e --extensions target image extensions.if none, all supported extensions are included.(default=None) -t --threads number of multiprocessing threads.if 0, automatically count max threads.(default=0) -d --dimension_plot show dimension(height/width) scatter plot.(default=False) -c --channel_hist show channelwise pixel value histogram. takes longer time.(default=False) -n --nonzero calculate values only from non-zero pixels of the images.(default=False) -f --hw_division_factor divide height,width of the images by this factor to make pixel value calculation faster. Information on height, width are not changed and will be printed correctly.(default=1.0) -V --version show version.
frombasic_image_edaimportBasicImageEDAif__name__=="__main__":# for multiprocessingdata_dir="./data"BasicImageEDA.explore(data_dir)# orextensions= ['png','jpg','jpeg']threads=0dimension_plot=Truechannel_hist=Truenonzero=Falsehw_division_factor=1.0BasicImageEDA.explore(data_dir,extensions,threads,dimension_plot,channel_hist,nonzero,hw_division_factor)
Results onceleba dataset (test set)
![]() | ![]() |
found 19962 images.Using 12 threads. (max:12)*--------------------------------------------------------------------------------------*number of images | 19962dtype | uint8channels | [3]extensions | ['jpg']min height | 85max height | 5616mean height | 591.8215108706543median height | 500min width | 85max width | 5616mean width | 490.2976655645727median width | 396mean height/width ratio | 1.207065732587525median height/width ratio | 1.2626262626262625recommended input size(by mean) | [592 488] (h x w, multiples of 8)recommended input size(by mean) | [592 496] (h x w, multiples of 16)recommended input size(by mean) | [576 480] (h x w, multiples of 32)channel mean(0~1) | [0.4954518 0.42574266 0.39330518]channel std(0~1) | [0.3216056 0.3023355 0.3018837]*--------------------------------------------------------------------------------------*
download site:http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
paper: S. Yang, P. Luo, C. C. Loy, and X. Tang, "From Facial Parts Responses to Face Detection: A Deep Learning Approach", in IEEE International Conference on Computer Vision (ICCV), 2015
Results onNIH Chest X-ray dataset (images_001.tar.gz)
![]() | ![]() |
found 4999 images.Using 12 threads. (max:12)*--------------------------------------------------------------------------------------*number of images | 4999dtype | uint8channels | [1, 4]extensions | ['png']min height | 1024max height | 1024mean height | 1024.0median height | 1024min width | 1024max width | 1024mean width | 1024.0median width | 1024mean height/width ratio | 1.0median height/width ratio | 1.0recommended input size(by mean) | [1024 1024] (h x w, multiples of 8)recommended input size(by mean) | [1024 1024] (h x w, multiples of 16)recommended input size(by mean) | [1024 1024] (h x w, multiples of 32)channel mean(0~1) | [0.5172472 0.5172472 0.5172472]channel std(0~1) | [0.25274998 0.25274998 0.25274998]*--------------------------------------------------------------------------------------*
data provider: NIH Clinical Center
download site:https://nihcc.app.box.com/v/ChestXray-NIHCC
paper: Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-ray8:Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization ofCommon Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017