- Notifications
You must be signed in to change notification settings - Fork4
Python Algorithms Package used in competitive programming
License
Shikha-code36/Competitive-Python
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
competitivepython is an open-source library of algorithms and data structures implemented in Python. It offers a collection of frequently used algorithms and data structures that can be directly used in any Python-based project.
- Checkout the blog regarding this libraryClick Here
- Provides implementations for several common algorithms and data structures such as:
- Searches: Binary Search, Linear Search, KMP Pattern Search
- Graphs: BFS, DFS, Dijkstra
- Sorting: Bubble Sort, Insertion Sort, Shell Sort, Selection Sort, Bucket Sort, Merge Sort, Tim Sort, Quick Sort, Heap Sort, Radix Sort
- Trees: Binary Search Tree
- Codebase is easy to use, well-documented, and compatible with Python 3.
- Open source and available under the MIT license
To install competitivepython library, simply run the following command:
pip install competitivepythonTo use competitivepython in your project, import the desired algorithm or data structure and use it as needed. Below are some example use cases:
Implementing searches:
- Binary Search
from competitivepython import searchesarr = [1, 2, 3, 4, 5]target = 3result = searches.binary_search(arr, target)print("Binary Search:",result) '''Output: Binary Search: 2''' - Linear Search
from competitivepython import searchesarr = [5, 7, 9, 2, 4, 10]target = 4result = searches.linear_search(arr, target)print("Linear Search:",result) '''Output: Linear Search: 4''' - Knuth–Morris–Pratt string Search
from competitivepython import searchestxt = "ABABDABACDABABCABAB"pat = "ABABCABAB"result = searches.kmp_search(pat,txt)print("KMP Search:",result) '''Output: KMP Search: [10]'''
- Binary Search
Implementing sorting:
- Bubble Sort
from competitivepython import sorting arr = [112, 6, 7, 12, 15] result = sorting.bubble_sort(arr) print('bubble sort:', result) ''' Output --- bubble sort: [6, 7, 12, 15, 112] ''' - Bucket Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.bucket_sort(arr)print('bucket sort:', result)''' Output --- bucket sort: [6, 7, 12, 15, 112]''' - Heap Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.heap_sort(arr)print('heap sort:', result)''' Output --- heap sort: [6, 7, 12, 15, 112] ''' - Insertion Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.insertion_sort(arr)print('insertion sort:', result)''' Output --- insertion sort: [6, 7, 12, 15, 112] ''' - Merge Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.merge_sort(arr)print('merge sort:', result)''' Output --- merge sort: [6, 7, 12, 15, 112] ''' - Quick Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.quick_sort(arr)print('quick sort:', result)''' Output --- quick sort: [6, 7, 12, 15, 112] ''' - Radix Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.radix_sort(arr)print('radix sort:', result)''' Output --- radix sort: [6, 7, 12, # 15, 112]''' - Selection Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.selection_sort(arr)print('selection sort:', result)''' Output --- selection sort: [6, 7, 12, 15, 112]''' - Shell Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.shell_sort(arr)print('shell sort:', result)''' Output --- shell sort: [6, 7, 12, 15, 112] ''' - Tim Sort
from competitivepython import sortingarr = [112, 6, 7, 12, 15]result = sorting.tim_sort(arr)print('tim sort:', result)''' Output --- tim sort: [6, 7, 12, 15, 112]'''
- Bubble Sort
Implementing graphs:
- Breadth First Search (or Breadth First Traversal)
from competitivepython import graphsgraph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1},}start = 'A'end = 'D'result = graphs.breadth_first_search(graph, 'C')print("bfs:",result)''' Output-- bfs: {'B', 'D', 'C', 'A'}''' - Depth First Search(or Depth First Traversal)
from competitivepython import graphsgraph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1},}start = 'A'end = 'D'result = graphs.depth_first_search(graph, 'C')print("dfs:",result)''' Output-- dfs: {'B', 'D', 'C', 'A'}''' - Dijkstra’s Shortest Path
from competitivepython import graphsgraph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1},}start = 'A'end = 'D'result = graphs.dijkstra(graph, start, end)print("dijikstra:",result)''' Output-- dijikstra: {'distance': 4, 'path': ['B', 'C', 'D']}'''
- Breadth First Search (or Breadth First Traversal)
Implementing trees:
from competitivepython import trees# Create an instance of the BinarySearchTreebst = trees.BinarySearchTree()# Insert some values into the treebst.insert(50)bst.insert(30)bst.insert(20)bst.insert(40)bst.insert(70)bst.insert(60)bst.insert(80)# Check if a value is present in the treeprint(bst.search(50)) # Output: Trueprint(bst.search(35)) # Output: False# Get the values in the tree in in-order traversal orderprint(bst.get_in_order_traversal()) # Output: [20, 30, 40, 50, 60, 70, 80]
If you would like to contribute to the competitivepython project, please refer to the contributing guidelines in CONTRIBUTING.md. We welcome contributions of all types, including bug reports, feature requests, and code contributions.
competitivepython is open source software released under the MIT license. Refer to the LICENSE file for more information.
About
Python Algorithms Package used in competitive programming
Topics
Resources
License
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.