Uh oh!
There was an error while loading.Please reload this page.
- Notifications
You must be signed in to change notification settings - Fork60
Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization
License
SciML/DataDrivenDiffEq.jl
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
DataDrivenDiffEq.jl is a package in the SciML ecosystem for data-driven differential equationstructural estimation and identification. These tools include automatically discovering equationsfrom data and using this to simulate perturbed dynamics.
For information on using the package,see the stable documentation. Use thein-development documentation for the version ofthe documentation which contains the un-released features.
## Generate some data by solving a differential equation########################################################using DataDrivenDiffEqusing ModelingToolkitusing OrdinaryDiffEqusing DataDrivenSparseusing LinearAlgebra# Create a test problemfunctionlorenz(u, p, t) x, y, z= u ẋ=10.0* (y- x) ẏ= x* (28.0- z)- y ż= x* y- (8/3)* zreturn [ẋ, ẏ, ż]endu0= [1.0;0.0;0.0]tspan= (0.0,100.0)dt=0.1prob=ODEProblem(lorenz, u0, tspan)sol=solve(prob,Tsit5(), saveat= dt)## Start the automatic discoveryddprob=DataDrivenProblem(sol)@variables tx(t)y(t)z(t)u= [x; y; z]basis=Basis(polynomial_basis(u,5), u, iv= t)opt=STLSQ(exp10.(-5:0.1:-1))ddsol=solve(ddprob, basis, opt, options=DataDrivenCommonOptions(digits=1))println(get_basis(ddsol))
Explicit ResultSolution with 3 equations and 7 parameters.Returncode: successSparsity: 7.0L2 Norm Error: 26.7343984476783AICC: 1.0013570199499398Model ##Basis#366 with 3 equationsStates : x(t) y(t) z(t)Parameters : 7Independent variable: tEquationsDifferential(t)(x(t)) = p₁*x(t) + p₂*y(t)Differential(t)(y(t)) = p₃*x(t) + p₄*y(t) + p₅*x(t)*z(t)Differential(t)(z(t)) = p₇*z(t) + p₆*x(t)*y(t)Parameters: p₁ : -10.0 p₂ : 10.0 p₃ : 28.0 p₄ : -1.0 p₅ : -1.0 p₆ : 1.0 p₇ : -2.7About
Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization
Topics
Resources
License
Code of conduct
Contributing
Security policy
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Sponsor this project
Uh oh!
There was an error while loading.Please reload this page.
Packages0
Uh oh!
There was an error while loading.Please reload this page.
