Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization

License

NotificationsYou must be signed in to change notification settings

SciML/DataDrivenDiffEq.jl

Join the chat at https://julialang.zulipchat.com #sciml-bridgedGlobal DocsDOI

codecovBuild Status

ColPrac: Contributor's Guide on Collaborative Practices for Community PackagesSciML Code Style

DataDrivenDiffEq.jl is a package in the SciML ecosystem for data-driven differential equationstructural estimation and identification. These tools include automatically discovering equationsfrom data and using this to simulate perturbed dynamics.

For information on using the package,see the stable documentation. Use thein-development documentation for the version ofthe documentation which contains the un-released features.

Quick Demonstration

## Generate some data by solving a differential equation########################################################using DataDrivenDiffEqusing ModelingToolkitusing OrdinaryDiffEqusing DataDrivenSparseusing LinearAlgebra# Create a test problemfunctionlorenz(u, p, t)    x, y, z= u    ẋ=10.0* (y- x)    ẏ= x* (28.0- z)- y    ż= x* y- (8/3)* zreturn [ẋ, ẏ, ż]endu0= [1.0;0.0;0.0]tspan= (0.0,100.0)dt=0.1prob=ODEProblem(lorenz, u0, tspan)sol=solve(prob,Tsit5(), saveat= dt)## Start the automatic discoveryddprob=DataDrivenProblem(sol)@variables tx(t)y(t)z(t)u= [x; y; z]basis=Basis(polynomial_basis(u,5), u, iv= t)opt=STLSQ(exp10.(-5:0.1:-1))ddsol=solve(ddprob, basis, opt, options=DataDrivenCommonOptions(digits=1))println(get_basis(ddsol))
Explicit ResultSolution with 3 equations and 7 parameters.Returncode: successSparsity: 7.0L2 Norm Error: 26.7343984476783AICC: 1.0013570199499398Model ##Basis#366 with 3 equationsStates : x(t) y(t) z(t)Parameters : 7Independent variable: tEquationsDifferential(t)(x(t)) = p₁*x(t) + p₂*y(t)Differential(t)(y(t)) = p₃*x(t) + p₄*y(t) + p₅*x(t)*z(t)Differential(t)(z(t)) = p₇*z(t) + p₆*x(t)*y(t)Parameters:   p₁ : -10.0   p₂ : 10.0   p₃ : 28.0   p₄ : -1.0   p₅ : -1.0   p₆ : 1.0   p₇ : -2.7

About

Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors38

Languages


[8]ページ先頭

©2009-2025 Movatter.jp