Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Sensitivity Analysis Library in Python. Contains Sobol, Morris, FAST, and other methods.

License

NotificationsYou must be signed in to change notification settings

SALib/SALib

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://raw.githubusercontent.com/SALib/SALib/main/docs/assets/logo.png

Sensitivity Analysis Library (SALib)

Python implementations of commonly used sensitivity analysis methods.Useful in systems modeling to calculate the effects of model inputs orexogenous factors on outputs of interest.

Documentation:ReadTheDocs

Requirements:NumPy,SciPy,matplotlib,pandas,Python 3 (from SALib v1.2 onwards SALib does not officially support Python 2)

Installation:pip install SALib orpip install . orconda install SALib

Build Status:Build StatusTest Coverage:Coverage Status

Included methods

Contributing: seehere

Quick Start

Procedural approach

fromSALib.sampleimportsaltellifromSALib.analyzeimportsobolfromSALib.test_functionsimportIshigamiimportnumpyasnpproblem= {'num_vars':3,'names': ['x1','x2','x3'],'bounds': [[-np.pi,np.pi]]*3}# Generate samplesparam_values=saltelli.sample(problem,1024)# Run model (example)Y=Ishigami.evaluate(param_values)# Perform analysisSi=sobol.analyze(problem,Y,print_to_console=True)# Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf'# (first and total-order indices with bootstrap confidence intervals)

It's also possible to specify the parameter bounds in a file with 3columns:

# name lower_bound upper_boundP1 0.0 1.0P2 0.0 5.0...etc.

Then theproblem dictionary above can be created from theread_param_file function:

fromSALib.utilimportread_param_fileproblem=read_param_file('/path/to/file.txt')# ... same as above

Lots of other options are included for parameter files, as well as acommand-line interface. See theadvancedsection in the documentation.

Method chaining approach

Chaining calls is supported from SALib v1.4

fromSALibimportProblemSpecfromSALib.test_functionsimportIshigamiimportnumpyasnp# By convention, we assign to "sp" (for "SALib Problem")sp=ProblemSpec({'names': ['x1','x2','x3'],# Name of each parameter'bounds': [[-np.pi,np.pi]]*3,# bounds of each parameter'outputs': ['Y']# name of outputs in expected order})(sp.sample_saltelli(1024,calc_second_order=True)   .evaluate(Ishigami.evaluate)   .analyze_sobol(print_to_console=True))print(sp)# Samples, model results and analyses can be extracted:print(sp.samples)print(sp.results)print(sp.analysis)# Basic plotting functionality is also providedsp.plot()

The above is equivalent to the procedural approach shown previously.

Also check out theFAQ andexamples for afull description of options for each method.

How to cite SALib

If you would like to use our software, please cite it using the following:

Iwanaga, T., Usher, W., & Herman, J. (2022).Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses.Socio-Environmental Systems Modelling, 4, 18155.doi:10.18174/sesmo.18155

Herman, J. and Usher, W. (2017) SALib: An open-source Python library forsensitivity analysis. Journal of Open Source Software, 2(9).doi:10.21105/joss.00097

paper status

If you use BibTeX, cite using the following entries:

@article{Iwanaga2022,  title = {Toward {SALib} 2.0: {Advancing} the accessibility and interpretability of global sensitivity analyses},  volume = {4},  url = {https://sesmo.org/article/view/18155},  doi = {10.18174/sesmo.18155},  journal = {Socio-Environmental Systems Modelling},  author = {Iwanaga, Takuya and Usher, William and Herman, Jonathan},  month = may,  year = {2022},  pages = {18155},}@article{Herman2017,  doi = {10.21105/joss.00097},  url = {https://doi.org/10.21105/joss.00097},  year  = {2017},  month = {jan},  publisher = {The Open Journal},  volume = {2},  number = {9},  author = {Jon Herman and Will Usher},  title = {{SALib}: An open-source Python library for Sensitivity Analysis},  journal = {The Journal of Open Source Software}}

Projects that use SALib

Many projects now use the Global Sensitivity Analysis features provided bySALib. Here is a selection:

Software

Blogs

Videos

If you would like to be added to this list, please submit a pull request,or create an issue.

Many thanks for using SALib.

How to contribute

Seehere for how to contribute to SALib.

License

Copyright (C) 2012-2019 Jon Herman, Will Usher, and others. Versions v0.5 andlater are released under theMIT license.

Packages

No packages published

Contributors46


[8]ページ先頭

©2009-2025 Movatter.jp