Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

OpenCSG dataflow is a one-stop data processing platform designed to leverage large model technology and advanced algorithms to optimize the entire data processing lifecycle, enhancing efficiency and precision, while addressing enterprise challenges in data management such as inefficiency, adaptability gaps, and security and compliance issues.

License

NotificationsYou must be signed in to change notification settings

OpenCSGs/csghub-dataflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenCSG dataflow is a one-stop data processing platform designed to leverage large model technology and advanced algorithms to optimize the entire data processing lifecycle, enhancing efficiency and precision, while addressing enterprise challenges in data management such as inefficiency, adaptability gaps, and security and compliance issues.

DataFlow is an open-source platform engineered to streamline end-to-end data processing within the AI/ML lifecycle. By unifying data workflows and model optimization, it transforms fragmented pipelines into a cohesive, automated system—ideal for enterprises tackling data complexity at scale.

🔑 Key Features

  1. Full Lifecycle Management
    • Unified handling of data ingestion, transformation, modeling, and evaluation.
  2. Seamless CSGHub Integration
    • Directly ingest datasets from CSGHub and push refined data back for model retraining, creating a continuous feedback loop .
  3. Modular & Extensible Design
    • Plug-and-play operators for custom pipelines (e.g., NLP, image, audio processing).
  4. Distributed Computing
    • Scale workloads across clusters via Kubernetes integration .
  5. Multi-Agent Task Orchestration
    • Dynamically allocate complex tasks (e.g., data validation, anomaly detection) to collaborative agents.
  6. MinerU Engine
    • Convert PDFs to structured Markdown/JSON for LLM-friendly datasets .
  7. Growing Operator Library
    • Expandable support for multimodal data (text, image, video) and domain-specific transformations.

🔗 Acknowledgements

This project is built uponData Juicer. We sincerely thank the Data Juicer team for their impactful work in data engineering.

📜 License

This project inherits theApache License 2.0 from Data Juicer.

🚀 Quick Start

Building data-flow from Source

docker build -t dataflow . -f Dockerfiledocker buildx build --provenance false --platform linux/amd64 -t dataflow . -f Dockerfiledocker buildx build --provenance false --platform linux/arm64 -t dataflow . -f Dockerfile

Prerequisites

Launch postgres container

docker run -d --name dataflow-pg \   -p 5433:5432 \   -v /tmp/data_flow/pgdata:/var/lib/postgresql/data \   -e POSTGRES_DB=data_flow \   -e POSTGRES_USER=postgres \   -e POSTGRES_PASSWORD=postgres \   opencsg-registry.cn-beijing.cr.aliyuncs.com/opencsghq/csghub/postgres:15.10

Launch mongoDB container

docker run -d --name dataflow-mongo \   -p 27017:27017 \   -v /tmp/data_flow/mongodata:/data/db \   -e MONGO_INITDB_ROOT_USERNAME=root \   -e MONGO_INITDB_ROOT_PASSWORD=example \   opencsg-registry.cn-beijing.cr.aliyuncs.com/opencsghq/mongo:8.0.12

Launch redis container

docker run -d --name dataflow-redis \   -p 16379:6379 \   -v /tmp/data_flow/redisdata:/data \   opencsg-registry.cn-beijing.cr.aliyuncs.com/opencsghq/redis:7.2.5

Installation data-flow

docker run -d --name dataflow-api -p 8000:8000 \   -v /tmp/data_flow/apidata:/data/dataflow_data \   -c"uvicorn data_server.main:app --host 0.0.0.0 --port 8000" \   -e DATA_DIR=/data/dataflow_data \   -e CSGHUB_ENDPOINT=https://hub.opencsg.com \   -e MAX_WORKERS=99 \   -e RAY_ADDRESS=auto \   -e RAY_ENABLE=False \   -e RAY_LOG_DIR=/data/ray_output \   -e API_SERVER=0.0.0.0 \   -e API_PORT=8000 \   -e ENABLE_OPENTELEMETRY=False \   -e DATABASE_DB=data_flow \   -e DATABASE_USERNAME=postgres \   -e DATABASE_PASSWORD=postgres \   -e DATABASE_HOSTNAME=127.0.0.1 \   -e DATABASE_PORT=5433 \   -e STUDIO_JUMP_URL=https://data-label.opencsg.com \   -e REDIS_HOST_URL=redis://127.0.0.1:16379 \   -e MONG_HOST_URL=mongodb://root:example@127.0.0.1:27017 \   dataflow

Installation data-flow-celery

docker run -d --name celery-work -p 8001:8001 \   -v /tmp/data_flow/celery-data:/data/dataflow_celery \   -c"celery -A data_celery.main:celery_app worker --loglevel=info --pool=gevent" \   -e DATA_DIR=/data/dataflow_celery \   -e CSGHUB_ENDPOINT=https://hub.opencsg.com \   -e MAX_WORKERS=99 \   -e RAY_ADDRESS=auto \   -e RAY_ENABLE=False \   -e RAY_LOG_DIR=/data/ray_output \   -e API_SERVER=0.0.0.0 \   -e API_PORT=8001 \   -e ENABLE_OPENTELEMETRY=False \   -e DATABASE_DB=data_flow \   -e DATABASE_USERNAME=postgres \   -e DATABASE_PASSWORD=postgres \   -e DATABASE_HOSTNAME=127.0.0.1 \   -e DATABASE_PORT=5433 \   -e REDIS_HOST_URL=redis://127.0.0.1:16379 \   -e MONG_HOST_URL=mongodb://root:example@127.0.0.1:27017 \   dataflow-celery

Run data-flow server in development mode locally

Create a Virtual Environment

uv venv --python 3.10source .venv/bin/activate# orconda create -n  dataflow python=3.10
# Install dependencies#pip install '.[dist]' -i https://pypi.tuna.tsinghua.edu.cn/simple/#pip install '.[tools]' -i https://pypi.tuna.tsinghua.edu.cn/simple/#pip install '.[sci]' -i https://pypi.tuna.tsinghua.edu.cn/simple/#pip install -r docker/requirements.txtuv pip install -r docker/dataflow_requirements.txt -i https://mirrors.aliyun.com/pypi/simple/# Run the server locallyuvicorn data_server.main:app --reload

Run data-flow-celery server in development mode locally

# Run the celery server locallycelery -A data_celery.main:celery_app worker --loglevel=info --pool=gevent

Notes:

  • kenlm,simhash-pybind,opencc==1.1.8,imagededup in fileenvironments/science_requires.txt are only support X86 platform. Remove them if you are using ARM platform.
  • The configuration information ofREDIS_HOST_URL andMONG_HOST_URL indata-flow anddata-flow-celery must be consistent.
  • If you want to use the data annotation service, please install and enable theLabel Studio service. Additionally, you need to set theSTUDIO_JUMP_URL variable of thedata-flow service to the address of theLabel Studio service.

🛣️ Roadmap

Upcoming:

  • Enhanced real-time data streaming
  • AutoML integration for automated model tuning
  • Cross-cloud synchronization
  • Support more data sources

🤝 Contributing

We welcome contributions!

📞 Contact

For support or queries:

About

OpenCSG dataflow is a one-stop data processing platform designed to leverage large model technology and advanced algorithms to optimize the entire data processing lifecycle, enhancing efficiency and precision, while addressing enterprise challenges in data management such as inefficiency, adaptability gaps, and security and compliance issues.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors7

Languages


[8]ページ先頭

©2009-2025 Movatter.jp