Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitb3304d6

Browse files
committed
#pyhton-pandas-tutorial - all solutions
1 parentbf10bc2 commitb3304d6

File tree

6 files changed

+306
-1
lines changed

6 files changed

+306
-1
lines changed

‎.learn/telemetry.json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.

‎.learn/vscode_queue.json

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
[{"name":"initializing","time":176012449.799},{"name":"reset","time":176012474.769},{"name":"configuration_loaded","time":176020111.849},{"name":"start_exercise","time":175929465.262,"data":"00-welcome"},{"name":"start_exercise","time":176019876.799,"data":"01-new-terminal"},{"name":"start_exercise","time":176318772.484,"data":"01.2-pipenv"},{"name":"start_exercise","time":175482651.957,"data":"02-install"},{"name":"start_exercise","time":175665773.622,"data":"02.1-create-a-script"},{"name":"start_exercise","time":175802030.031,"data":"02.2-import"},{"name":"start_exercise","time":175972982.837,"data":"03-datasets"},{"name":"start_exercise","time":176133317.671,"data":"04-Series"},{"name":"start_exercise","time":176317415.677,"data":"04.1-date-range"},{"name":"start_exercise","time":175473421.687,"data":"04.2-series-apply"},{"name":"start_exercise","time":175636616.11,"data":"05-dataframes"},{"name":"start_exercise","time":175820587.455,"data":"05.1-dataframe-dict"},{"name":"start_exercise","time":175996817.127,"data":"05.2-dataframe-iloc"},{"name":"start_exercise","time":176162184.688,"data":"05.3-dataframe-head"},{"name":"start_exercise","time":175505153.744,"data":"05.4-dataframe-tail"},{"name":"start_exercise","time":175663634.159,"data":"05.5-print-columns"},{"name":"start_exercise","time":176083679.268,"data":"05.6-loc-function"},{"name":"start_exercise","time":176280161.041,"data":"05.7-filter-and-count"},{"name":"start_exercise","time":175651652.033,"data":"06-clean-datasets"},{"name":"start_exercise","time":175822790.663,"data":"06.1-remove-column"},{"name":"start_exercise","time":175965081.196,"data":"06.2-value-counts"},{"name":"open_terminal","time":175973706.728,"data":""},{"name":"start_exercise","time":175746885.05,"data":"06.1-remove-column"},{"name":"open_terminal","time":175993820.817,"data":""},{"name":"open_terminal","time":176440381.151,"data":""},{"name":"open_terminal","time":175953097.915,"data":""},{"name":"open_terminal","time":175651773.494,"data":""},{"name":"start_exercise","time":176287215.934,"data":"06.2-value-counts"},{"name":"start_exercise","time":176678109.822,"data":"06.3-group-by"},{"name":"open_terminal","time":176433481.766,"data":""}]

‎Pipfile

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
[[source]]
2+
url ="https://pypi.org/simple"
3+
verify_ssl =true
4+
name ="pypi"
5+
6+
[packages]
7+
pandas ="*"
8+
9+
[dev-packages]
10+
11+
[requires]
12+
python_version ="3.10"

‎Pipfile.lock

Lines changed: 161 additions & 0 deletions
Some generated files are not rendered by default. Learn more aboutcustomizing how changed files appear on GitHub.

‎app.py

Lines changed: 130 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,130 @@
1+
"""
2+
3+
#02.1
4+
5+
print("Hello World")
6+
7+
#02.2
8+
import pandas as pd
9+
10+
data_frame = pd.read_csv(".learn/assets/pokemon_data.csv")
11+
print(data_frame)
12+
13+
#04
14+
15+
data = pd.Series([23,45,7,34,6,63,36,78,54,34])
16+
print(data)
17+
18+
#04.1
19+
print(pd.date_range("2021-05-01", "2021-05-12"))
20+
21+
#04.2
22+
23+
def divide(n): return n / 2
24+
25+
my_series = pd.Series([2, 4, 6, 8, 10])
26+
27+
print(my_series.apply(divide))
28+
29+
#05 DataFrames
30+
31+
data = [["Toyota", "Corolla", "Blue"], ["Ford", "K", "Yellow"], ["Porsche", "Cayenne", "White"]]
32+
33+
data_frame = pd.DataFrame(data, columns=["Brand", "Model", "Color"])
34+
print(data_frame)
35+
36+
#05.1 DataFrame Dict
37+
import pandas as pd
38+
39+
data = [
40+
{
41+
"brand": "Toyota",
42+
"model": "Corolla",
43+
"color": "Blue"
44+
},
45+
{
46+
"brand": "Ford",
47+
"model": "K",
48+
"color": "Yellow"
49+
},
50+
{
51+
"brand": "Porsche",
52+
"model": "Cayenne",
53+
"color": "White"
54+
}
55+
]
56+
57+
58+
59+
data_frame = pd.DataFrame(data)
60+
new_row = ["Tesla", "Model S", "Red"]
61+
data_frame.loc[len(data_frame)] = new_row
62+
print(data_frame)
63+
64+
#05.2 DA
65+
66+
import pandas as pd
67+
68+
data_frame = pd.read_csv(".learn/assets/pokemon_data.csv")
69+
print(data_frame.iloc[133, 6])
70+
71+
#05.3 DataFrame Head
72+
73+
print(data_frame.head(3))
74+
75+
#05.4 DataFrame Tail
76+
77+
import pandas as pd
78+
79+
data_frame = pd.read_csv(".learn/assets/pokemon_data.csv")
80+
print(data_frame.tail(3))
81+
82+
83+
# 05.5 Print Columns
84+
85+
import pandas as pd
86+
87+
data_frame = pd.read_csv(".learn/assets/pokemon_data.csv")
88+
89+
print(data_frame[['Name', 'Type 1']][0:10])
90+
91+
92+
# 05.6 Loc Function
93+
94+
print(data_frame.loc[data_frame['Attack'] > 80])
95+
96+
# 05.7 Filter and Count
97+
98+
print(len(data_frame.loc[data_frame['Legendary'] == True]))
99+
100+
import pandas as pd
101+
102+
data_frame = pd.read_csv(".learn/assets/us_baby_names_right.csv")
103+
print(data_frame.head(5))
104+
105+
106+
#06.1 Remove Column
107+
108+
import pandas as pd
109+
110+
data_frame = pd.read_csv(".learn/assets/us_baby_names_right.csv")
111+
112+
data_frame = data_frame.drop(labels = "Unnamed: 0", axis = 1)
113+
print(data_frame.head(5))
114+
"""
115+
116+
#06.2 Value Counts
117+
118+
importpandasaspd
119+
120+
data_frame=pd.read_csv(".learn/assets/us_baby_names_right.csv")
121+
122+
print(data_frame['Gender'].value_counts())
123+
124+
#06.3 Group By
125+
126+
importpandasaspd
127+
128+
data_frame=pd.read_csv(".learn/assets/us_baby_names_right.csv")
129+
names=data_frame.groupby("Name")
130+
print(len(names.sum()))

‎conftest.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,4 +24,4 @@ def pytest_generate_tests(metafunc):
2424
exceptAttributeError:
2525
metafunc.parametrize("app",[cached_app])
2626
if'configuration'inmetafunc.fixturenames:
27-
metafunc.parametrize("configuration", [json.loads('{"port":3000,"os":"linux","editor":{"mode":"extension","agent":"vscode","version":"3.1.44"},"dirPath":"./.learn","configPath":"learn.json","outputPath":".learn/dist","publicPath":"/preview","publicUrl":"https://cautious-space-sniffle-465wrg46xfqv47-3000.app.github.dev","contact":"https://github.com/learnpack/learnpack/issues/new","language":"auto","autoPlay":true,"projectType":"tutorial","grading":"incremental","exercisesPath":".learn/exercises","webpackTemplate":null,"disableGrading":false,"disabledActions":["build"],"actions":[],"entries":{"html":"index.html","vanillajs":"index.js","react":"app.jsx","node":"app.js","python3":"app.py","java":"app.java"},"preview":"https://github.com/4GeeksAcademy/python-pandas-tutorial/blob/main/.learn/assets/pandas-preview.jpeg?raw=true","difficulty":"beginner","duration":3,"description":{"us":"Master Pandas, the most popular Python library for machine learning, with our pandas tutorial exercises. Learn to create DataFrames, clean datasets, and more, with exercises developed by experts.","es":"Domina Pandas, la biblioteca más popular de Python para machine learning, con nuestro tutorial de python pandas. Aprende a crear DataFrames, limpiar datasets y más, con ejercicios desarrollados en 80 horas."},"technologies":["pandas","machine learning","data science","python"],"title":{"us":"Pandas tutorial exercises","es":"Tutorial de Pandas: Interactivo, auto-corregido y con mentor de inteligencia artificial"},"slug":"pandas-for-machine-learning","telemetry":{"batch":"https://breathecode.herokuapp.com/v1/assignment/me/telemetry"},"translations":[]}')])
27+
metafunc.parametrize("configuration", [json.loads('{"port":3000,"os":"linux","editor":{"mode":"extension","agent":"vscode","version":"4.0"},"dirPath":"./.learn","configPath":"learn.json","outputPath":".learn/dist","publicPath":"/preview","publicUrl":"http://localhost:3000","contact":"https://github.com/learnpack/learnpack/issues/new","language":"auto","autoPlay":true,"projectType":"tutorial","grading":"incremental","exercisesPath":".learn/exercises","webpackTemplate":null,"disableGrading":false,"disabledActions":["build"],"actions":[],"entries":{"html":"index.html","vanillajs":"index.js","react":"app.jsx","node":"app.js","python3":"app.py","java":"app.java"},"suggestions":{"agent":"vscode"},"warnings":{"agent":null},"preview":"https://github.com/4GeeksAcademy/python-pandas-tutorial/blob/main/.learn/assets/pandas-preview.jpeg?raw=true","difficulty":"beginner","duration":3,"description":{"us":"Master Pandas, the most popular Python library for machine learning, with our pandas tutorial exercises. Learn to create DataFrames, clean datasets, and more, with exercises developed by experts.","es":"Domina Pandas, la biblioteca más popular de Python para machine learning, con nuestro tutorial de python pandas. Aprende a crear DataFrames, limpiar datasets y más, con ejercicios desarrollados en 80 horas."},"technologies":["pandas","machine learning","data science","python"],"title":{"us":"Pandas tutorial exercises","es":"Tutorial de Pandas: Interactivo, auto-corregido y con mentor de inteligencia artificial"},"slug":"pandas-for-machine-learning","telemetry":{"batch":"https://breathecode.herokuapp.com/v1/assignment/me/telemetry"},"translations":[]}')])

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp