Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Pytorch implements yolov3.Good performance, easy to use, fast speed.

License

NotificationsYou must be signed in to change notification settings

Lornatang/YOLOv3-PyTorch

Repository files navigation

Contents

Introduction

This repository contains an op-for-op PyTorch reimplementation ofYOLOv3: An Incremental Improvement.

Getting Started

Requirements

  • Python 3.10+
  • PyTorch 2.0.0+
  • CUDA 11.8+
  • Ubuntu 22.04+

From PyPI

pip install yolov3_pytorch -i https://pypi.org/simple

Local Install

git clone https://github.com/Lornatang/YOLOv3-PyTorch.gitcd YOLOv3-PyTorchpip install -r requirements.txtpip install -e.

All pretrained model weights

Inference

# Download pretrained model weights to `./results/pretrained_models`wget https://github.com/Lornatang/YOLOv3-PyTorch/releases/download/0.1.5/YOLOv3_Tiny-COCO-20231107.pth.tar -O ./results/pretrained_models/YOLOv3_Tiny-COCO-20231107.pth.tarpython ./tools/inference.py ./data/examples/dog.jpg# Loaded `./results/pretrained_models/YOLOv3_Tiny-COCO-20231107.pth.tar` models weights successfully.# image 1/1 ./data/examples/dog.jpg: 320x416 1 bicycle, 2 car, 1 dog,# See ./results/inference/dog.jpg for visualization.

Test

# Download dataset to `./data`cd ./scriptsbash ./process_voc0712_dataset.shcd ..# Download pretrained model weights to `./results/pretrained_models`wget https://github.com/Lornatang/YOLOv3-PyTorch/releases/download/0.1.5/YOLOv3_Tiny-VOC-20231107.pth.tar -O ./results/pretrained_models/YOLOv3_Tiny-VOC-20231107.pth.tarpython ./tools/eval.py ./configs/VOC-Detection/yolov3_tiny.yaml

Results

COCO Object Detection

NameSizemAPval
0.5:0.95
FLOPs(G)Parameters(M)Memory(MB)download
yolov3_tiny41618.75.60.718.9model
yolov3_tiny_prn41611.13.50.664.9model
yolov341666.766.20.8861.9model
yolov3_spp41666.766.50.8863.0model

VOC Object Detection

ModelSizemAPval
0.5:0.95
FLOPs(B)Memory(MB)Parameters(M)download
yolov3_tiny41658.85.50.278.7model
yolov3_tiny_prn41647.93.50.274.9model
yolov341682.965.70.6161.6model
yolov3_spp41683.266.10.8862.7model
yolov3_mobilenetv141665.66.60.696.2model
yolov3_mobilenetv241668.23.50.494.3model
yolov3_vgg1641674.1122.80.7435.5model

Train

VOC

# Download dataset to `./data`cd ./scriptsbash ./process_voc0712_dataset.shcd ..# Download pretrained model weights to `./results/pretrained_models`wget https://github.com/Lornatang/YOLOv3-PyTorch/releases/download/0.1.5/YOLOv3_Tiny-VOC-20231107.pth.tar -O ./results/pretrained_models/YOLOv3_Tiny-VOC-20231107.pth.tar# change WEIGHTS_PATH in ./configs/VOC-Detection/yolov3_tiny.yamlpython ./tools/train.py ./configs/VOC-Detection/yolov3_tiny.yaml

COCO

# COCO2014# Download dataset to `./data`cd ./scriptsbash ./process_coco2014_dataset.shcd ..# Download pretrained model weights to `./results/pretrained_models`wget https://github.com/Lornatang/YOLOv3-PyTorch/releases/download/0.1.5/YOLOv3_Tiny-COCO-20231107.pth.tar -O ./results/pretrained_models/YOLOv3_Tiny-COCO-20231107.pth.tar# change WEIGHTS_PATH in ./configs/COCO-Detection/yolov3_tiny.yamlpython ./tools/train.py ./configs/COCO-Detection/yolov3_tiny.yaml

Custom dataset

Details seeCustomDataset.md.

Contributing

If you find a bug, create a GitHub issue, or even better, submit a pull request. Similarly, if you have questions,simply post them as GitHub issues.

I look forward to seeing what the community does with these models!

Credit

YOLOv3: An Incremental Improvement

Joseph Redmon, Ali Farhadi

Abstract
We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trainedthis new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though,don’t worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look atthe old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared to 57.5AP50 in 198 ms by RetinaNet, similar performance but 3.8× faster. As always, all the code is onlineathttps://pjreddie.com/yolo/.

[Paper][Project Webpage][Authors' Implementation]

@article{yolov3,title={YOLOv3: An Incremental Improvement},author={Redmon, Joseph and Farhadi, Ali},journal ={arXiv},year={2018}}

Packages

No packages published

Contributors3

  •  
  •  
  •  

[8]ページ先頭

©2009-2026 Movatter.jp