Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Pretrain, finetune ANY AI model of ANY size on 1 or 10,000+ GPUs with zero code changes.

License

NotificationsYou must be signed in to change notification settings

Lightning-AI/pytorch-lightning

Lightning

The deep learning framework to pretrain and finetune AI models.

Deploying models? Check outLitServe, the PyTorch Lightning for inference engines


Quick startExamplesPyTorch LightningFabricLightning CloudCommunityDocs

PyPI - Python VersionPyPI StatusPyPI - DownloadsCondacodecov

DiscordGitHub commit activitylicense

 

Get started

 

Looking for GPUs?

Over 340,000 developers useLightning Cloud - purpose-built for PyTorch and PyTorch Lightning.

Why PyTorch Lightning?

Training models in plain PyTorch is tedious and error-prone - you have to manually handle things like backprop, mixed precision, multi-GPU, and distributed training, often rewriting code for every new project. PyTorch Lightning organizes PyTorch code to automate those complexities so you can focus on your model and data, while keeping full control and scaling from CPU to multi-node without changing your core code. But if you want control of those things, you can still opt intoexpert-level control.

Fun analogy: If PyTorch is Javascript, PyTorch Lightning is ReactJS or NextJS.

Lightning has 2 core packages

PyTorch Lightning: Train and deploy PyTorch at scale.
Lightning Fabric: Expert control.

Lightning gives you granular control over how much abstraction you want to add over PyTorch.

 

Quick start

Install Lightning:

pip install lightning
Advanced install options

Install with optional dependencies

pip install lightning['extra']

Conda

conda install lightning -c conda-forge

Install stable version

Install future release from the source

pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U

Install bleeding-edge

Install nightly from the source (no guarantees)

pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U

or from testing PyPI

pip install -iU https://test.pypi.org/simple/ pytorch-lightning

PyTorch Lightning example

Define the training workflow. Here's a toy example (explore real examples):

# main.py# ! pip install torchvisionimporttorch,torch.nnasnn,torch.utils.dataasdata,torchvisionastv,torch.nn.functionalasFimportlightningasL# --------------------------------# Step 1: Define a LightningModule# --------------------------------# A LightningModule (nn.Module subclass) defines a full *system*# (ie: an LLM, diffusion model, autoencoder, or simple image classifier).classLitAutoEncoder(L.LightningModule):def__init__(self):super().__init__()self.encoder=nn.Sequential(nn.Linear(28*28,128),nn.ReLU(),nn.Linear(128,3))self.decoder=nn.Sequential(nn.Linear(3,128),nn.ReLU(),nn.Linear(128,28*28))defforward(self,x):# in lightning, forward defines the prediction/inference actionsembedding=self.encoder(x)returnembeddingdeftraining_step(self,batch,batch_idx):# training_step defines the train loop. It is independent of forwardx,_=batchx=x.view(x.size(0),-1)z=self.encoder(x)x_hat=self.decoder(z)loss=F.mse_loss(x_hat,x)self.log("train_loss",loss)returnlossdefconfigure_optimizers(self):optimizer=torch.optim.Adam(self.parameters(),lr=1e-3)returnoptimizer# -------------------# Step 2: Define data# -------------------dataset=tv.datasets.MNIST(".",download=True,transform=tv.transforms.ToTensor())train,val=data.random_split(dataset, [55000,5000])# -------------------# Step 3: Train# -------------------autoencoder=LitAutoEncoder()trainer=L.Trainer()trainer.fit(autoencoder,data.DataLoader(train),data.DataLoader(val))

Run the model on your terminal

pip install torchvisionpython main.py

 

Convert from PyTorch to PyTorch Lightning

PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.

PT to PL

 


Examples

Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:

TaskDescriptionRun
Hello worldPretrain - Hello world exampleOpen In Studio
Image classificationFinetune - ResNet-34 model to classify images of carsOpen In Studio
Image segmentationFinetune - ResNet-50 model to segment imagesOpen In Studio
Object detectionFinetune - Faster R-CNN model to detect objectsOpen In Studio
Text classificationFinetune - text classifier (BERT model)Open In Studio
Text summarizationFinetune - text summarization (Hugging Face transformer model)Open In Studio
Audio generationFinetune - audio generator (transformer model)Open In Studio
LLM finetuningFinetune - LLM (Meta Llama 3.1 8B)Open In Studio
Image generationPretrain - Image generator (diffusion model)Open In Studio
Recommendation systemTrain - recommendation system (factorization and embedding)Open In Studio
Time-series forecastingTrain - Time-series forecasting with LSTMOpen In Studio

Advanced features

Lightning has over40+ advanced featuresdesigned for professional AI research at scale.

Here are some examples:

Train on 1000s of GPUs without code changes
# 8 GPUs# no code changes neededtrainer=Trainer(accelerator="gpu",devices=8)# 256 GPUstrainer=Trainer(accelerator="gpu",devices=8,num_nodes=32)
Train on other accelerators like TPUs without code changes
# no code changes neededtrainer=Trainer(accelerator="tpu",devices=8)
16-bit precision
# no code changes neededtrainer=Trainer(precision=16)
Experiment managers
fromlightningimportloggers# tensorboardtrainer=Trainer(logger=TensorBoardLogger("logs/"))# weights and biasestrainer=Trainer(logger=loggers.WandbLogger())# comettrainer=Trainer(logger=loggers.CometLogger())# mlflowtrainer=Trainer(logger=loggers.MLFlowLogger())# neptunetrainer=Trainer(logger=loggers.NeptuneLogger())# ... and dozens more
Early Stopping
es=EarlyStopping(monitor="val_loss")trainer=Trainer(callbacks=[es])
Checkpointing
checkpointing=ModelCheckpoint(monitor="val_loss")trainer=Trainer(callbacks=[checkpointing])
Export to torchscript (JIT) (production use)
# torchscriptautoencoder=LitAutoEncoder()torch.jit.save(autoencoder.to_torchscript(),"model.pt")
Export to ONNX (production use)
# onnxwithtempfile.NamedTemporaryFile(suffix=".onnx",delete=False)astmpfile:autoencoder=LitAutoEncoder()input_sample=torch.randn((1,64))autoencoder.to_onnx(tmpfile.name,input_sample,export_params=True)os.path.isfile(tmpfile.name)

Advantages over unstructured PyTorch

  • Models become hardware agnostic
  • Code is clear to read because engineering code is abstracted away
  • Easier to reproduce
  • Make fewer mistakes because lightning handles the tricky engineering
  • Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
  • Lightning has dozens of integrations with popular machine learning tools.
  • Tested rigorously with every new PR. We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
  • Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).


  

Lightning Fabric: Expert control

Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.

Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.

What to changeResulting Fabric Code (copy me!)
+ import lightning as L  import torch; import torchvision as tv dataset = tv.datasets.CIFAR10("data", download=True,                               train=True,                               transform=tv.transforms.ToTensor())+ fabric = L.Fabric()+ fabric.launch()  model = tv.models.resnet18()  optimizer = torch.optim.SGD(model.parameters(), lr=0.001)- device = "cuda" if torch.cuda.is_available() else "cpu"- model.to(device)+ model, optimizer = fabric.setup(model, optimizer)  dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)+ dataloader = fabric.setup_dataloaders(dataloader)  model.train()  num_epochs = 10  for epoch in range(num_epochs):      for batch in dataloader:          inputs, labels = batch-         inputs, labels = inputs.to(device), labels.to(device)          optimizer.zero_grad()          outputs = model(inputs)          loss = torch.nn.functional.cross_entropy(outputs, labels)-         loss.backward()+         fabric.backward(loss)          optimizer.step()          print(loss.data)
importlightningasLimporttorch;importtorchvisionastvdataset=tv.datasets.CIFAR10("data",download=True,train=True,transform=tv.transforms.ToTensor())fabric=L.Fabric()fabric.launch()model=tv.models.resnet18()optimizer=torch.optim.SGD(model.parameters(),lr=0.001)model,optimizer=fabric.setup(model,optimizer)dataloader=torch.utils.data.DataLoader(dataset,batch_size=8)dataloader=fabric.setup_dataloaders(dataloader)model.train()num_epochs=10forepochinrange(num_epochs):forbatchindataloader:inputs,labels=batchoptimizer.zero_grad()outputs=model(inputs)loss=torch.nn.functional.cross_entropy(outputs,labels)fabric.backward(loss)optimizer.step()print(loss.data)

Key features

Easily switch from running on CPU to GPU (Apple Silicon, CUDA, …), TPU, multi-GPU or even multi-node training
# Use your available hardware# no code changes neededfabric=Fabric()# Run on GPUs (CUDA or MPS)fabric=Fabric(accelerator="gpu")# 8 GPUsfabric=Fabric(accelerator="gpu",devices=8)# 256 GPUs, multi-nodefabric=Fabric(accelerator="gpu",devices=8,num_nodes=32)# Run on TPUsfabric=Fabric(accelerator="tpu")
Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box
# Use state-of-the-art distributed training techniquesfabric=Fabric(strategy="ddp")fabric=Fabric(strategy="deepspeed")fabric=Fabric(strategy="fsdp")# Switch the precisionfabric=Fabric(precision="16-mixed")fabric=Fabric(precision="64")
All the device logic boilerplate is handled for you
  # no more of this!- model.to(device)- batch.to(device)
Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more
importlightningasLclassMyCustomTrainer:def__init__(self,accelerator="auto",strategy="auto",devices="auto",precision="32-true"):self.fabric=L.Fabric(accelerator=accelerator,strategy=strategy,devices=devices,precision=precision)deffit(self,model,optimizer,dataloader,max_epochs):self.fabric.launch()model,optimizer=self.fabric.setup(model,optimizer)dataloader=self.fabric.setup_dataloaders(dataloader)model.train()forepochinrange(max_epochs):forbatchindataloader:input,target=batchoptimizer.zero_grad()output=model(input)loss=loss_fn(output,target)self.fabric.backward(loss)optimizer.step()

You can find a more extensive example in ourexamples



  

Examples

Self-supervised Learning
Convolutional Architectures
Reinforcement Learning
GANs
Classic ML

  

Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.

*Codecov is > 90%+ but build delays may show less
Current build statuses
System / PyTorch ver.1.132.02.1
Linux py3.9 [GPUs]Build Status
Linux (multiple Python versions)Test PyTorchTest PyTorchTest PyTorch
OSX (multiple Python versions)Test PyTorchTest PyTorchTest PyTorch
Windows (multiple Python versions)Test PyTorchTest PyTorchTest PyTorch

  

Community

The lightning community is maintained by

  • 10+ core contributors who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
  • 800+ community contributors.

Want to help us build Lightning and reduce boilerplate for thousands of researchers?Learn how to make your first contribution here

Lightning is also part of thePyTorch ecosystem which requires projects to have solid testing, documentation and support.

Asking for help

If you have any questions please:

  1. Read the docs.
  2. Search through existing Discussions, oradd a new question
  3. Join our discord.

[8]ページ先頭

©2009-2025 Movatter.jp