Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit5f2a1b4

Browse files
authored
Added tasks 2884-2888
1 parentcff5c3c commit5f2a1b4

File tree

10 files changed

+274
-0
lines changed

10 files changed

+274
-0
lines changed
Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
2884\. Modify Columns
2+
3+
Easy
4+
5+
DataFrame`employees`
6+
7+
+-------------+--------+
8+
| Column Name | Type |
9+
+-------------+--------+
10+
| name | object |
11+
| salary | int |
12+
+-------------+--------+
13+
14+
A company intends to give its employees a pay rise.
15+
16+
Write a solution to**modify** the`salary` column by multiplying each salary by 2.
17+
18+
The result format is in the following example.
19+
20+
**Example 1:**
21+
22+
**Input:** DataFrame employees
23+
24+
+---------+--------+
25+
| name | salary |
26+
+---------+--------+
27+
| Jack | 19666 |
28+
| Piper | 74754 |
29+
| Mia | 62509 |
30+
| Ulysses | 54866 |
31+
+---------+--------+
32+
33+
**Output:**
34+
35+
+---------+--------+
36+
| name | salary |
37+
+---------+--------+
38+
| Jack | 39332 |
39+
| Piper | 149508 |
40+
| Mia | 125018 |
41+
| Ulysses | 109732 |
42+
+---------+--------+
43+
44+
**Explanation:** Every salary has been doubled.
Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# #Easy #2023_12_23_Time_401_ms_(96.35%)_Space_60.2_MB_(54.27%)
2+
3+
importpandasaspd
4+
5+
defmodifySalaryColumn(employees:pd.DataFrame)->pd.DataFrame:
6+
employees['salary']=employees['salary']*2
7+
returnemployees
Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,49 @@
1+
2885\. Rename Columns
2+
3+
Easy
4+
5+
DataFrame`students`
6+
7+
+-------------+--------+
8+
| Column Name | Type |
9+
+-------------+--------+
10+
| id | int |
11+
| first | object |
12+
| last | object |
13+
| age | int |
14+
+-------------+--------+
15+
16+
Write a solution to rename the columns as follows:
17+
18+
*`id` to`student_id`
19+
*`first` to`first_name`
20+
*`last` to`last_name`
21+
*`age` to`age_in_years`
22+
23+
The result format is in the following example.
24+
25+
**Example 1:****Input:**
26+
27+
+----+---------+----------+-----+
28+
| id | first | last | age |
29+
+----+---------+----------+-----+
30+
| 1 | Mason | King | 6 |
31+
| 2 | Ava | Wright | 7 |
32+
| 3 | Taylor | Hall | 16 |
33+
| 4 | Georgia | Thompson | 18 |
34+
| 5 | Thomas | Moore | 10 |
35+
+----+---------+----------+-----+
36+
37+
**Output:**
38+
39+
+------------+------------+-----------+--------------+
40+
| student_id | first_name | last_name | age_in_years |
41+
+------------+------------+-----------+--------------+
42+
| 1 | Mason | King | 6 |
43+
| 2 | Ava | Wright | 7 |
44+
| 3 | Taylor | Hall | 16 |
45+
| 4 | Georgia | Thompson | 18 |
46+
| 5 | Thomas | Moore | 10 |
47+
+------------+------------+-----------+--------------+
48+
49+
**Explanation:** The column names are changed accordingly.
Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# #Easy #2023_12_23_Time_467_ms_(68.13%)_Space_60.7_MB_(15.08%)
2+
3+
importpandasaspd
4+
5+
defrenameColumns(students:pd.DataFrame)->pd.DataFrame:
6+
students.rename(columns={'id':'student_id','first':'first_name','last':'last_name','age':'age_in_years'},inplace=True)
7+
returnstudents
Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
2886\. Change Data Type
2+
3+
Easy
4+
5+
DataFrame`students`
6+
7+
+-------------+--------+
8+
| Column Name | Type |
9+
+-------------+--------+
10+
| student_id | int |
11+
| name | object |
12+
| age | int |
13+
| grade | float |
14+
+-------------+--------+
15+
16+
Write a solution to correct the errors:
17+
18+
The`grade` column is stored as floats, convert it to integers.
19+
20+
The result format is in the following example.
21+
22+
**Example 1:****Input:** DataFrame students:
23+
24+
+------------+------+-----+-------+
25+
| student_id | name | age | grade |
26+
+------------+------+-----+-------+
27+
| 1 | Ava | 6 | 73.0 |
28+
| 2 | Kate | 15 | 87.0 |
29+
+------------+------+-----+-------+
30+
31+
**Output:**
32+
33+
+------------+------+-----+-------+
34+
| student_id | name | age | grade |
35+
+------------+------+-----+-------+
36+
| 1 | Ava | 6 | 73 |
37+
| 2 | Kate | 15 | 87 |
38+
+------------+------+-----+-------+
39+
40+
**Explanation:** The data types of the column grade is converted to int.
Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# #Easy #2023_12_23_Time_421_ms_(94.57%)_Space_59.2_MB_(92.43%)
2+
3+
importpandasaspd
4+
5+
defchangeDatatype(students:pd.DataFrame)->pd.DataFrame:
6+
students['grade']=students['grade'].astype(int)
7+
returnstudents
Lines changed: 43 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,43 @@
1+
2887\. Fill Missing Data
2+
3+
Easy
4+
5+
DataFrame`products`
6+
7+
+-------------+--------+
8+
| Column Name | Type |
9+
+-------------+--------+
10+
| name | object |
11+
| quantity | int |
12+
| price | int |
13+
+-------------+--------+
14+
15+
Write a solution to fill in the missing value as <code>**0**</code> in the`quantity` column.
16+
17+
The result format is in the following example.
18+
19+
**Example 1:**
20+
21+
**Input:**
22+
23+
+-----------------+----------+-------+
24+
| name | quantity | price |
25+
+-----------------+----------+-------+
26+
| Wristwatch | None | 135 |
27+
| WirelessEarbuds | None | 821 |
28+
| GolfClubs | 779 | 9319 |
29+
| Printer | 849 | 3051 |
30+
+-----------------+----------+-------+
31+
32+
**Output:**
33+
34+
+-----------------+----------+-------+
35+
| name | quantity | price |
36+
+-----------------+----------+-------+
37+
| Wristwatch | 0 | 135 |
38+
| WirelessEarbuds | 0 | 821 |
39+
| GolfClubs | 779 | 9319 |
40+
| Printer | 849 | 3051 |
41+
+-----------------+----------+-------+
42+
43+
**Explanation:** The quantity for Wristwatch and WirelessEarbuds are filled by 0.
Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
# #Easy #2023_12_23_Time_404_ms_(97.11%)_Space_59.7_MB_(74.95%)
2+
3+
importpandasaspd
4+
5+
deffillMissingValues(products:pd.DataFrame)->pd.DataFrame:
6+
products['quantity'].fillna(0,inplace=True)
7+
returnproducts
Lines changed: 64 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,64 @@
1+
2888\. Reshape Data: Concatenate
2+
3+
Easy
4+
5+
DataFrame`df1`
6+
7+
+-------------+--------+
8+
| Column Name | Type |
9+
+-------------+--------+
10+
| student_id | int |
11+
| name | object |
12+
| age | int |
13+
+-------------+--------+
14+
15+
DataFrame`df2`
16+
17+
+-------------+--------+
18+
| Column Name | Type |
19+
+-------------+--------+
20+
| student_id | int |
21+
| name | object |
22+
| age | int |
23+
+-------------+--------+
24+
25+
Write a solution to concatenate these two DataFrames**vertically** into one DataFrame.
26+
27+
The result format is in the following example.
28+
29+
**Example 1:**
30+
31+
**Input: df1**
32+
33+
+------------+---------+-----+
34+
| student_id | name | age |
35+
+------------+---------+-----+
36+
| 1 | Mason | 8 |
37+
| 2 | Ava | 6 |
38+
| 3 | Taylor | 15 |
39+
| 4 | Georgia | 17 |
40+
+------------+---------+-----+
41+
42+
**df2**
43+
44+
+------------+------+-----+
45+
| student_id | name | age |
46+
+------------+------+-----+
47+
| 5 | Leo | 7 |
48+
| 6 | Alex | 7 |
49+
+------------+------+-----+
50+
51+
**Output:**
52+
53+
+------------+---------+-----+
54+
| student_id | name | age |
55+
+------------+---------+-----+
56+
| 1 | Mason | 8 |
57+
| 2 | Ava | 6 |
58+
| 3 | Taylor | 15 |
59+
| 4 | Georgia | 17 |
60+
| 5 | Leo | 7 |
61+
| 6 | Alex | 7 |
62+
+------------+---------+-----+
63+
64+
**Explanation:** The two DataFramess are stacked vertically, and their rows are combined.
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
# #Easy #2023_12_23_Time_441_ms_(96.26%)_Space_59_MB_(97.37%)
2+
3+
importpandasaspd
4+
5+
defconcatenateTables(df1:pd.DataFrame,df2:pd.DataFrame)->pd.DataFrame:
6+
returnpd.concat([df1,df2],ignore_index=True)

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp