Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A TensorFlow Implementation of the Transformer: Attention Is All You Need

License

NotificationsYou must be signed in to change notification settings

Kyubyong/transformer

Repository files navigation

When I opened this repository in 2017, there was no official code yet.I tried to implement the paper as I understood, but to no surpriseit had several bugs. I realized them mostly thanks to people who issued here, soI'm very grateful to all of them. Though there is theofficial implementation as well asseveral other unofficial github repos, I decided to update my own one.This update focuses on:

  • readable / understandable code writing
  • modularization (but not too much)
  • revising known bugs. (masking, positional encoding, ...)
  • updating to TF1.12. (tf.data, ...)
  • adding some missing components (bpe, shared weight matrix, ...)
  • including useful comments in the code.

I still stick to IWSLT 2016 de-en. I guess if you'd like to test on a big data suchas WMT, you would rely on the official implementation.After all, it's pleasant to check quickly if your model works.The initial code for TF1.2 is moved to thetf1.2_lecacy folder for the record.

Requirements

  • python==3.x (Let's move on to python 3 if you still use python 2)
  • tensorflow==1.12.0
  • numpy>=1.15.4
  • sentencepiece==0.1.8
  • tqdm>=4.28.1

Training

bash download.sh

It should be extracted toiwslt2016/de-en folder automatically.

  • STEP 2. Run the command below to create preprocessed train/eval/test data.
python prepro.py

If you want to change the vocabulary size (default:32000), do this.

python prepro.py --vocab_size 8000

It should create two foldersiwslt2016/prepro andiwslt2016/segmented.

  • STEP 3. Run the following command.
python train.py

Checkhparams.py to see which parameters are possible. For example,

python train.py --logdir myLog --batch_size 256 --dropout_rate 0.5
  • STEP 3. Or download the pretrained models.
wget https://dl.dropbox.com/s/4lom1czy5xfzr4q/log.zip; unzip log.zip; rm log.zip

Training Loss Curve

Learning rate

Bleu score on devset

Inference (=test)

  • Run
python test.py --ckpt log/1/iwslt2016_E19L2.64-29146 (OR yourCkptFile OR yourCkptFileDirectory)

Results

  • Typically, machine translation is evaluated with Bleu score.
  • All evaluation results are available ineval/1 andtest/1.
tst2013 (dev)tst2014 (test)
28.0623.88

Notes

  • Beam decoding will be added soon.
  • I'm going to update the code when TF2.0 comes out if possible.

About

A TensorFlow Implementation of the Transformer: Attention Is All You Need

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors7


[8]ページ先頭

©2009-2025 Movatter.jp